Top-down synthesis of muscle-inspired alluaudite Na2+2xFe2-x(SO4)3/SWNT spindle as a high-rate and high-potential cathode for sodium-ion batteries

被引:96
作者
Meng, Yu [1 ]
Yu, Tiantian [2 ]
Zhang, Sen [1 ]
Deng, Chao [2 ]
机构
[1] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Minist Educ, Key Lab Superlight Mat & Surface Technol, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Normal Univ, Coll Chem & Chem Engn, Minist Educ, Key Lab Photon & Elect Bandgap Mat, Harbin 150025, Heilongjiang, Peoples R China
关键词
RECHARGEABLE BATTERIES; LITHIUM INTERCALATION; ELECTRODE MATERIALS; LI-ION; IRON; NA; CHEMISTRY; FE; PYROPHOSPHATE; PERFORMANCE;
D O I
10.1039/c5ta07696j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The tailoring of materials into bio-inspired structures is triggering unprecedented innovations. Muscle tissue is composed of myofibrils and densely wired blood vessels; it is a perfect model for designing high-performance electrode materials that have the advantage of fast mass transport and superior durability. We design a top-down strategy as a facile approach to tailor the alluaudite Na2+2xFe2-x(SO4)(3) into a muscle-like spindle. A precipitation process is employed to prepare the hydrated "top" precursor, which is subjected to dehydration and phase transformation to obtain the "down" product. The alluaudite sulfate nanoparticles closely anchor on the single-wall carbon nanotubes (SWNT), and they together aggregate into microscale particles in the shape of spindles. The Na2+2xFe2-x(SO4)(3)/SWNT composite as a whole copies the morphology and function of muscle tissue. Taking advantage of its 3D conductive framework and porous structure, the composite achieves fast electron/ion transport and sodium intercalation. Moreover, the single-phase reaction mechanism during sodium intercalation is beneficial to its cycling property. It exhibits such desirable electrochemical performance as an operating potential as high as similar to 3.8 V and a high-rate capability, which achieves a capacity retention of 92% after 100 cycles at 5C. The muscle-inspired architecture makes electrode materials favorable for superior electrochemical performance.
引用
收藏
页码:1624 / 1631
页数:8
相关论文
共 46 条
[1]   Structural and Electrochemical Diversity in LiFe1-δZnδSO4F Solid Solution: A Fe-Based 3.9 V Positive-Electrode Material [J].
Ati, Mohammed ;
Melot, Brent C. ;
Rousse, Gwenaelle ;
Chotard, Jean-Noel ;
Barpanda, Prabeer ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (45) :10574-10577
[2]  
Bard J., 2001, ELECTROCHEMICAL METH
[3]  
Barpanda P, 2011, NAT MATER, V10, P772, DOI [10.1038/NMAT3093, 10.1038/nmat3093]
[4]   Sulfate Chemistry for High-Voltage Insertion Materials: Synthetic, Structural and Electrochemical Insights [J].
Barpanda, Prabeer .
ISRAEL JOURNAL OF CHEMISTRY, 2015, 55 (05) :537-557
[5]   A 3.8-V earth-abundant sodium battery electrode [J].
Barpanda, Prabeer ;
Oyama, Gosuke ;
Nishimura, Shin-ichi ;
Chung, Sai-Cheong ;
Yamada, Atsuo .
NATURE COMMUNICATIONS, 2014, 5
[6]   Krohnkite-Type Na2Fe(SO4)2•2H2O as a Novel 3.25 V Insertion Compound for Na-Ion Batteries [J].
Barpanda, Prabeer ;
Oyama, Gosuke ;
Ling, Chris D. ;
Yamada, Atsuo .
CHEMISTRY OF MATERIALS, 2014, 26 (03) :1297-1299
[7]   Eco-efficient splash combustion synthesis of nanoscale pyrophosphate (Li2FeP2O7) positive-electrode using Fe(III) precursors [J].
Barpanda, Prabeer ;
Ye, Tian ;
Chung, Sai-Cheong ;
Yamada, Yuki ;
Nishimura, Shin-ichi ;
Yamada, Atsuo .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (27) :13455-13459
[8]   Structural, Transport, and Electrochemical Investigation of Novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) Metal Fluorosulphates Prepared Using Low Temperature Synthesis Routes [J].
Barpanda, Prabeer ;
Chotard, Jean-Noel ;
Recham, Nadir ;
Delacourt, Charles ;
Ati, Mohamed ;
Dupont, Loic ;
Armand, Michel ;
Tarascon, Jean-Marie .
INORGANIC CHEMISTRY, 2010, 49 (16) :7401-7413
[9]  
Berthelot R, 2011, NAT MATER, V10, P74, DOI [10.1038/nmat2920, 10.1038/NMAT2920]
[10]   α-NaFeO2:: ionic conductivity and sodium extraction [J].
Blesa, MC ;
Moran, E ;
León, C ;
Santamaria, J ;
Tornero, JD ;
Menéndez, N .
SOLID STATE IONICS, 1999, 126 (1-2) :81-87