An Adaptive DPPM for Efficient and Robust Visible Light Communication Across the Air-Water Interface

被引:4
|
作者
Islam, Md Shafiqul [1 ]
Younis, Mohamed [1 ]
机构
[1] Univ Maryland Baltimore Cty, Dept Comp Sci & Elect Engn, Baltimore, MD 21228 USA
基金
美国国家科学基金会;
关键词
Differential pulse position modulation; Underwater networks; Free space optics; Visible light communication; PULSE-POSITION MODULATION;
D O I
10.1109/wocc48579.2020.9114944
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The scarcity of the optical power is the main challenge for underwater visible light communication. It becomes worst for communication across the air-water interface because of the reflection of light from the air-water interface. Differential pulse position modulation (DPPM) is one of the power efficient modulation techniques. In L-DPPM a block of M = log(2)L input data is mapped into one of the L distinct waveforms containing only one on chip. The size of the DPPM packet is variable and depends on the value of input data and L, which makes error detection quite challenging. In this paper, we propose a frame structure that efficiently enables error detection within a packet for various symbol length, L, of DPPM. We also propose an algorithm using such a frame structure to enable effective detection of packet errors and for adaptively changing the value of L for optimal power efficiency while meeting a certain bound on the packet error rate (PER). We have named our proposed protocol as adaptive differential pulse position modulation (ADPPM). The Bit rate and PER have been studied for different signal-to-noise ratio (SNR) through simulation. A comparison between ADPPM and OOK, DPPM with fixed L is provided.
引用
收藏
页码:139 / 144
页数:6
相关论文
共 50 条
  • [41] Bacterial accumulation at the air-water interface
    Schafer, A
    Harms, H
    Zehnder, AJB
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1998, 32 (23) : 3704 - 3712
  • [42] Hydroxyl radical at the air-water interface
    Roeselová, M
    Vieceli, J
    Dang, LX
    Garrett, BC
    Tobias, DJ
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (50) : 16308 - 16309
  • [43] Atmospheric Intermediates at the Air-Water Interface
    Enami, Shinichi
    Numadate, Naoki
    Hama, Tetsuya
    JOURNAL OF PHYSICAL CHEMISTRY A, 2024, 128 (28): : 5419 - 5434
  • [44] Bronsted basicity of the air-water interface
    Mishra, Himanshu
    Enami, Shinichi
    Nielsen, Robert J.
    Stewart, Logan A.
    Hoffmann, Michael R.
    Goddard, William A., III
    Colussi, Agustin J.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (46) : 18679 - 18683
  • [45] Polymer Behavior at the Air-Water Interface
    Ligia Gargallo
    MRS Bulletin, 2010, 35 : 615 - 622
  • [46] Chiral recognition at the air-water interface
    Ariga, Katsuhiko
    Michinobu, Tsuyoshi
    Nakanishi, Takashi
    Hill, Jonathan P.
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2008, 13 (1-2) : 23 - 30
  • [47] DNA hybridization at the air-water interface
    Ebara, Y
    Mizutani, K
    Okahata, Y
    LANGMUIR, 2000, 16 (06) : 2416 - 2418
  • [48] Crystallization of a polyphosphoester at the air-water interface
    Hasan, Nazmul
    Schwieger, Christian
    Tee, Hisaschi T.
    Wurm, Frederik R.
    Busse, Karsten
    Kressler, Joerg
    EUROPEAN POLYMER JOURNAL, 2018, 101 : 350 - 357
  • [49] Hydroxide anion at the air-water interface
    Mundy, Christopher J.
    Kuo, I-Feng W.
    Tuckerman, Mark E.
    Lee, Hee-Seung
    Tobias, Douglas J.
    CHEMICAL PHYSICS LETTERS, 2009, 481 (1-3) : 2 - 8
  • [50] POLYDIMETHYLSILOXANE MONOLAYERS AT AN AIR-WATER INTERFACE
    KAKIHARA, Y
    HIMMELBL.DM
    SCHECHTE.RS
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1969, 30 (02) : 200 - &