Non-additive shortest paths

被引:0
作者
Tsaggouris, G
Zaroliagis, C
机构
[1] Comp Technol Inst, Patras 26110, Greece
[2] Univ Patras, Dept Comp Engn & Informat, Patras 26500, Greece
来源
ALGORITHMS ESA 2004, PROCEEDINGS | 2004年 / 3221卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The non-additive shortest path (NASP) problem asks for finding an optimal path that minimizes a certain multi-attribute nonlinear cost function. In this paper, we consider the case of a non-linear convex and non-decreasing function on two attributes. We present an efficient polynomial algorithm for solving a Lagrangian relaxation of NASP. We also present an exact algorithm that is based on new heuristics we introduce here, and conduct a comparative experimental study with synthetic and real-world data that demonstrates the quality of our approach.
引用
收藏
页码:822 / 834
页数:13
相关论文
共 14 条
[1]  
AHUJA RK, 1993, NETWORKS FLOWS
[2]  
[Anonymous], EUROPEAN J OPERATION
[3]   AN ALGORITHM FOR THE RESOURCE CONSTRAINED SHORTEST-PATH PROBLEM [J].
BEASLEY, JE ;
CHRISTOFIDES, N .
NETWORKS, 1989, 19 (04) :379-394
[4]  
Cheney EW., 1966, INTRO APPROXIMATION
[5]  
GABRIEL S, 2000, COMP MATH ORG THEORY, V6
[6]   The traffic equilibrium problem with nonadditive path costs [J].
Gabriel, SA ;
Bernstein, D .
TRANSPORTATION SCIENCE, 1997, 31 (04) :337-348
[7]   A DUAL ALGORITHM FOR THE CONSTRAINED SHORTEST-PATH PROBLEM [J].
HANDLER, GY ;
ZANG, I .
NETWORKS, 1980, 10 (04) :293-310
[8]  
Hensher D.A., 1985, J. Transp. Econ. Policy, V19, P237
[9]  
MEHLHORN K, 2000, LNCS, V1879, P326
[10]   ROUTING WITH NONLINEAR MULTIATTRIBUTE COST-FUNCTIONS [J].
MIRCHANDANI, PB ;
WIECEK, MM .
APPLIED MATHEMATICS AND COMPUTATION, 1993, 54 (2-3) :215-239