Semiparametric analysis of survival data with left truncation and right censoring

被引:13
作者
Shen, Pao-Sheng [1 ]
机构
[1] Tunghai Univ, Dept Stat, Taichung 40704, Taiwan
关键词
PRODUCT-LIMIT ESTIMATE; NONPARAMETRIC-ESTIMATION; ASYMPTOTIC PROPERTIES; REGRESSION; MODELS;
D O I
10.1016/j.csda.2009.06.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Let T, C and V denote the lifetime, censoring and truncation variables, respectively. Assume that (C, V) is independent of T and P(C >= V) = 1. Let F, Q and G denote the common distribution functions of T, C and V, respectively. For left-truncated and right-censored (LTRC) data, one can observe nothing if T < V and observe (X, delta, V), with X = min(T, C) and delta = I([T <= C]), if T >= V. For LTRC data, the truncation product-limit estimate <(F)over cap>(n) is the maximum likelihood estimate (MLE) for nonparametric models. If the distribution of V is parameterized as G(x; theta) and the distributions of T and C are left unspecified, the product-limit estimate (F) over cap (n) is not the MLE for this semiparametric model. In this article, for LTRC data, two semiparametric estimates are proposed for the semiparametric model. A simulation study is conducted to compare the performances of the two semiparametric estimators against that of (F) over cap (n). The proposed semiparametric method is applied to a Charming House data. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:4417 / 4432
页数:16
相关论文
共 50 条
  • [31] Semiparametric regression analysis for composite endpoints subject to componentwise censoring
    Diao, Guoqing
    Zeng, Donglin
    Ke, Chunlei
    Ma, Haijun
    Jiang, Qi
    Ibrahim, Joseph G.
    BIOMETRIKA, 2018, 105 (02) : 403 - 418
  • [32] Semiparametric estimation for the additive hazards model with left-truncated and right-censored data
    Huang, Chiung-Yu
    Qin, Jing
    BIOMETRIKA, 2013, 100 (04) : 877 - 888
  • [33] Survival function estimation of current status data with dependent censoring
    Hsieh, Jin-Jian
    Chen, Yung-Yu
    STATISTICS & PROBABILITY LETTERS, 2020, 157
  • [34] Modified estimators in semiparametric regression models with right-censored data
    Aydin, Dursun
    Yilmaz, Ersin
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (08) : 1470 - 1498
  • [35] Mix-supervised multiset learning for cancer prognosis analysis with high-censoring survival data
    Du, Denghui
    Feng, Qianjin
    Chen, Wufan
    Ning, Zhenyuan
    Zhang, Yu
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 239
  • [36] Estimation for semiparametric varying coefficient models with different smoothing variables under random right censoring
    Yang, Seong J.
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2018, 47 (02) : 161 - 171
  • [37] On the robustness of right andmiddle censoring schemes in parametric survival models
    Abuzaid, A. H.
    Abu El-Qumsan, M. K.
    El-Habil, A. M.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (03) : 1771 - 1780
  • [38] A class of semiparametric models for bivariate survival data
    dos Reis Miranda Filho, Walmir
    Demarqui, Fabio Nogueira
    LIFETIME DATA ANALYSIS, 2025, 31 (01) : 102 - 125
  • [39] A semiparametric estimator of survival for doubly truncated data
    Moreira, Carla
    de Una-Alvarez, Jacobo
    STATISTICS IN MEDICINE, 2010, 29 (30) : 3147 - 3159
  • [40] Estimation from cross-sectional data under a semiparametric truncation model
    Heuchenne, C.
    De Una-Alvarez, J.
    Laurent, G.
    BIOMETRIKA, 2020, 107 (02) : 449 - 465