Semiparametric analysis of survival data with left truncation and right censoring

被引:13
|
作者
Shen, Pao-Sheng [1 ]
机构
[1] Tunghai Univ, Dept Stat, Taichung 40704, Taiwan
关键词
PRODUCT-LIMIT ESTIMATE; NONPARAMETRIC-ESTIMATION; ASYMPTOTIC PROPERTIES; REGRESSION; MODELS;
D O I
10.1016/j.csda.2009.06.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Let T, C and V denote the lifetime, censoring and truncation variables, respectively. Assume that (C, V) is independent of T and P(C >= V) = 1. Let F, Q and G denote the common distribution functions of T, C and V, respectively. For left-truncated and right-censored (LTRC) data, one can observe nothing if T < V and observe (X, delta, V), with X = min(T, C) and delta = I([T <= C]), if T >= V. For LTRC data, the truncation product-limit estimate <(F)over cap>(n) is the maximum likelihood estimate (MLE) for nonparametric models. If the distribution of V is parameterized as G(x; theta) and the distributions of T and C are left unspecified, the product-limit estimate (F) over cap (n) is not the MLE for this semiparametric model. In this article, for LTRC data, two semiparametric estimates are proposed for the semiparametric model. A simulation study is conducted to compare the performances of the two semiparametric estimators against that of (F) over cap (n). The proposed semiparametric method is applied to a Charming House data. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:4417 / 4432
页数:16
相关论文
共 50 条
  • [21] Estimation of the joint survival function for successive duration times under double-truncation and right-censoring
    Shen, Pao-sheng
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (13) : 2673 - 2683
  • [22] Cause-specific hazard regression for competing risks data under interval censoring and left truncation
    Li, Chenxi
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 104 : 197 - 208
  • [23] Bayesian analysis of survival data with missing censoring indicators
    Brownstein, Naomi C.
    Bunn, Veronica
    Castro, Luis M.
    Sinha, Debajyoti
    BIOMETRICS, 2021, 77 (01) : 305 - 315
  • [24] ASYMPTOTIC PROPERTIES OF THE CONDITIONAL HAZARD FUNCTION AND ITS MAXIMUM ESTIMATION UNDER RIGHT-CENSORING AND LEFT-TRUNCATION
    Komi, Agbokou
    Essona, Gneyou Kossi
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 12 (03): : 351 - 374
  • [25] Semiparametric likelihood inference for left-truncated and right-censored data
    Huang, Chiung-Yu
    Ning, Jing
    Qin, Jing
    BIOSTATISTICS, 2015, 16 (04) : 785 - 798
  • [26] Statistical inference for right-censored data with nonignorable missing censoring indicators
    Sun ZhiHua
    Xie TianFa
    Liang Hua
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (06) : 1263 - 1278
  • [27] Weibull Racing Survival Analysis with Competing Events, Left Truncation, and Time-Varying Covariates
    Zhang, Quan
    Xu, Yanxun
    Wang, Mei-Cheng
    Zhou, Mingyuan
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [29] Variable screening for survival data in the presence of heterogeneous censoring
    Xu, Jinfeng
    Li, Wai Keung
    Ying, Zhiliang
    SCANDINAVIAN JOURNAL OF STATISTICS, 2020, 47 (04) : 1171 - 1191
  • [30] Bootstrap Intervals in the Presence of Left-Truncation, Censoring and Covariates with a Parametric Distribution
    Manoharan, Thirunanthini
    Arasan, Jayanthi
    Midi, Habshah
    Adam, Mohd Bakri
    SAINS MALAYSIANA, 2017, 46 (12): : 2529 - 2539