Artificial intelligence in neurocritical care

被引:10
|
作者
Al -Mufti, Fawaz [1 ,2 ]
Dodson, Vincent [5 ]
Lee, James [5 ,6 ]
Wajswol, Ethan [5 ]
Gandhi, Chirag [1 ,2 ]
Scurlock, Corey [3 ,4 ]
Cole, Chad [1 ]
Lee, Kiwon [5 ,6 ]
Mayer, Stephan A. [7 ]
机构
[1] New York Med Coll, Dept Neurosurg, Westchester Med Ctr, Valhalla, NY 10595 USA
[2] New York Med Coll, Dept Neurol, Westchester Med Ctr, Valhalla, NY 10595 USA
[3] New York Med Coll, Dept Anesthesiol, Westchester Med Ctr, Valhalla, NY 10595 USA
[4] New York Med Coll, Dept Internal Med, Westchester Med Ctr, Valhalla, NY 10595 USA
[5] Rutgers State Univ, New Jersey Med Sch, Dept Neurosurg, Newark, NJ USA
[6] Rutgers State Univ, Robert Wood Johnson Med Sch, Dept Neurol, New Brunswick, NJ USA
[7] Henry Ford Hlth Syst, Dept Neurol, Detroit, MI USA
关键词
Multimodality monitory; Artificial intelligence; Neurocritical care; Closed-loop system; CLOSED-LOOP; INTRACRANIAL-PRESSURE; BISPECTRAL INDEX; HEAD-INJURY; SYSTEM; ANESTHESIA; MANAGEMENT; HYPERVENTILATION; VENTILATION; PREDICTION;
D O I
10.1016/j.jns.2019.06.024
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Neurocritical care combines the management of extremely complex disease states with the inherent limitations of clinically assessing patients with brain injury. As the management of neurocritical care patients can be immensely complicated, the automation of data-collection and basic management by artificial intelligence systems have garnered interest. Methods: In this opinion article, we highlight the potential artificial intelligence has in monitoring and managing several aspects of neurocritical care, specifically intracranial pressure, seizure monitoring, blood pressure, and ventilation. Results: The two major AI methods of analytical technique currently exist for analyzing critical care data: the model-based method and data driven method. Both of these methods have demonstrated an ability to analyze vast quantities of patient data, and we highlight the ways in which these modalities of artificial intelligence might one day play a role in neurocritical care. Conclusions: While none of these artificial intelligence systems are meant to replace the clinician's judgment, these systems have the potential to reduce healthcare costs and errors or delays in medical management.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 50 条
  • [21] Advances in Neurocritical Care
    Soonu Udani
    The Indian Journal of Pediatrics, 2015, 82 : 272 - 276
  • [22] Neuroprotection in neurocritical care
    Kollmar, Rainer
    MEDIZINISCHE KLINIK-INTENSIVMEDIZIN UND NOTFALLMEDIZIN, 2019, 114 (07) : 635 - 641
  • [23] Fluids and hyperosmolar agents in neurocritical care: an update
    Farrokh, Salia
    Cho, Sung-Min
    Suarez, Jose I.
    CURRENT OPINION IN CRITICAL CARE, 2019, 25 (02) : 105 - 109
  • [24] Big data and predictive analytics in neurocritical care
    Alkhachroum, Ayham
    Kromm, Julie
    De Georgia, Michael A.
    CURRENT NEUROLOGY AND NEUROSCIENCE REPORTS, 2022, 22 (01) : 19 - 32
  • [25] Multimodal Neuromonitoring: Current Scenario in Neurocritical Care
    Goyal, Keshav
    Khandelwal, Ankur
    Kedia, Shweta
    JOURNAL OF NEUROANAESTHESIOLOGY AND CRITICAL CARE, 2019, 6 (01) : 62 - 71
  • [26] Scope of artificial intelligence in airway management
    Naik, Naveen B.
    Mathew, Preethy J.
    Kundra, Pankaj
    INDIAN JOURNAL OF ANAESTHESIA, 2024, 68 (01) : 105 - 110
  • [27] Artificial Intelligence in Perioperative Care: Opportunities and Challenges
    Han, Lichy
    Char, Danton S.
    Aghaeepour, Nima
    ANESTHESIOLOGY, 2024, 141 (02) : 379 - 387
  • [28] A sustainable artificial-intelligence-augmented digital care pathway for epilepsy: Automating seizure tracking based on electroencephalogram data using artificial intelligence
    Keikhosrokiani, Pantea
    Isomursu, Minna
    Uusimaa, Johanna
    Kortelainen, Jukka
    DIGITAL HEALTH, 2024, 10
  • [29] Artificial Intelligence in Spine Care
    Gutman, Michael J.
    Schroeder, Gregory D.
    Murphy, Hamadi
    Flanders, Adam E.
    Vaccaro, Alexander R.
    CLINICAL SPINE SURGERY, 2021, 34 (04): : 121 - 124
  • [30] Artificial Intelligence in Critical Care
    Mathur, Piyush
    Burns, Michael L.
    INTERNATIONAL ANESTHESIOLOGY CLINICS, 2019, 57 (02) : 89 - 102