Exactly solvable Kondo lattice model in the anisotropic limit

被引:13
作者
Yang, Wei-Wei [1 ,2 ]
Zhao, Jize [1 ,2 ]
Luo, Hong-Gang [1 ,2 ,3 ]
Zhong, Yin [1 ,2 ]
机构
[1] Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Gansu, Peoples R China
[2] Lanzhou Univ, Key Lab Magnetism & Magnet Mat MoE, Lanzhou 730000, Gansu, Peoples R China
[3] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
关键词
QUANTUM; PHASE; TRANSITIONS; FIELD;
D O I
10.1103/PhysRevB.100.045148
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we introduce an exactly solvable Kondo lattice model without any fine-tuning local gauge symmetry. This model describes itinerant electrons interplaying with a localized magnetic moment via only longitudinal Kondo exchange. Its solvability results from conservation of the localized moment at each site, and is valid for arbitrary lattice geometry and electron filling. A case study on a square lattice shows that the ground state is a Neel antiferromagnetic insulator at half-filling. At finite temperature, paramagnetic phases including a Mott insulator and correlated metal are found. The former is a melting antiferromagnetic insulator with a strong short-range magnetic fluctuation, while the latter corresponds to a Fermi liquidlike metal. Monte Carlo simulation and theoretical analysis demonstrate that the transition from paramagnetic phases into the antiferromagnetic insulator is a continuous two-dimensional Ising transition. Away from half-filling, patterns of spin stripes (inhomogeneous magnetic order) at weak coupling, and phase separation at strong coupling are predicted. With established Ising antiferromagnetism and spin stripe orders, our model may be relevant to a heavy fermion compound CeCo(In1-xHgx)(5) and novel quantum liquid-crystal order in a hidden order compound URu2Si2.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Exactly solvable Kitaev model in three dimensions
    Mandal, Saptarshi
    Surendran, Naveen
    PHYSICAL REVIEW B, 2009, 79 (02)
  • [2] Quadrupolar spin liquid, octupolar Kondo coupling, and odd-frequency superconductivity in an exactly solvable model
    de Farias, Carlene S.
    de Carvalho, Vanuildo S.
    Miranda, Eduardo
    Pereira, Rodrigo G.
    PHYSICAL REVIEW B, 2020, 102 (07)
  • [3] Exactly solvable model of topological insulator realized on spin-1/2 lattice
    Karnaukhov, Igor N.
    Slieptsov, Igor O.
    EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (10)
  • [4] Liouvillian skin effect in an exactly solvable model
    Yang, Fan
    Jiang, Qing-Dong
    Bergholtz, Emil J.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [5] Topological order in an exactly solvable 3D spin model
    Bravyi, Sergey
    Leemhuis, Bernhard
    Terhal, Barbara M.
    ANNALS OF PHYSICS, 2011, 326 (04) : 839 - 866
  • [6] Dynamics of an exactly solvable model of cavity quantum electrodynamics
    Bashkirov, E. K.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2023, 27 (02): : 250 - 269
  • [7] Algebraic Spin Liquid in an Exactly Solvable Spin Model
    Yao, Hong
    Zhang, Shou-Cheng
    Kivelson, Steven A.
    PHYSICAL REVIEW LETTERS, 2009, 102 (21)
  • [8] Exactly solvable dual bus-route model
    Ngoc, Ngo Phuoc Nguyen
    Thi, Huynh Anh
    Vinh, Nguyen Van
    PHYSICAL REVIEW E, 2024, 110 (05)
  • [9] ENTANGLEMENT IN THE ANISOTROPIC KONDO NECKLACE MODEL
    Mendoza-Arenas, J. J.
    Franco, R.
    Silva-Valencia, J.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (31): : 6165 - 6174
  • [10] Rule 54: exactly solvable model of nonequilibrium statistical mechanics
    Buca, Berislav
    Klobas, Katja
    Prosen, Tomaz
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (07):