A multiresolution diffused expectation-maximization algorithm for medical image segmentation

被引:11
作者
Boccignone, Giuseppe
Napoletano, Paolo
Caggiano, Vittorio
Ferraro, Mario
机构
[1] Univ Salerno, DIIIE, Nat Computat Lab, I-84084 Fisciano, SA, Italy
[2] Univ Naples Federico II, Dipartimento Informat & Sistemist, I-80125 Naples, Italy
[3] Univ Turin, Dipartimento Fis Sperimentale, I-10100 Turin, Italy
关键词
image segmentation; expectation-maximization; multiresolution;
D O I
10.1016/j.compbiomed.2005.10.002
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper a new method for segmenting medical images is presented, the multiresolution diffused expectation-maximization (MDEM) algorithm. The algorithm operates within a multiscale framework, thus taking advantage of the fact that objects/regions to be segmented usually reside at different scales. At each scale segmentation is carried out via the expectation-maximization algorithm, coupled with anisotropic diffusion on classes, in order to account for the spatial dependencies among pixels. This new approach is validated via experiments on a variety of medical images and its performance is compared with more standard methods. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:83 / 96
页数:14
相关论文
共 50 条
[31]   Filter pruning via expectation-maximization [J].
Xu, Sheng ;
Li, Yanjing ;
Yang, Linlin ;
Zhang, Baochang ;
Sun, Dianmin ;
Liu, Kexin .
NEURAL COMPUTING & APPLICATIONS, 2022, 34 (15) :12807-12818
[32]   Filter pruning via expectation-maximization [J].
Sheng Xu ;
Yanjing Li ;
Linlin Yang ;
Baochang Zhang ;
Dianmin Sun ;
Kexin Liu .
Neural Computing and Applications, 2022, 34 :12807-12818
[33]   Unsupervised texture segmentation/classification using 2-D autoregressive modeling and the stochastic expectation-maximization algorithm [J].
Cariou, Claude ;
Chehdi, Kacem .
PATTERN RECOGNITION LETTERS, 2008, 29 (07) :905-917
[34]   Multivariate LTE Performance Assessment through an Expectation-Maximization Algorithm Approach [J].
Pasquino, Nicola ;
Ventre, Giorgio ;
Zinno, Stefania ;
Ignarro, Federica ;
Petrocelli, Sofia .
2019 IEEE INTERNATIONAL SYMPOSIUM ON MEASUREMENTS & NETWORKING (M&N 2019), 2019,
[35]   MSD-EMA: Multiscale Decoupled Expectation-Maximization Attention for Polyp Segmentation [J].
Du, Xiaogang ;
Zou, Yibin ;
Lei, Tao ;
Gu, Dongxin ;
Zhang, Xuejun ;
Nandi, Asoke K. .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
[36]   An Expectation-Maximization Algorithm for Combining a Sample of Partially Overlapping Covariance Matrices [J].
Akdemir, Deniz ;
Somo, Mohamed ;
Isidro-Sanchez, Julio .
AXIOMS, 2023, 12 (02)
[37]   Expectation-maximization algorithm with a nonlinear Kalman smoother for MEG/EEG connectivity estimation [J].
Subramaniyam, Narayan Puthanmadam ;
Tronarp, Filip ;
Sarkka, Simo ;
Parkkonen, Lauri .
EMBEC & NBC 2017, 2018, 65 :763-766
[38]   AN EXPECTATION-MAXIMIZATION ALGORITHM FOR MULTICHANNEL ADAPTIVE SPEECH DEREVERBERATION IN THE FREQUENCY-DOMAIN [J].
Schmid, Dominic ;
Malik, Sarmad ;
Enzner, Gerald .
2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, :17-20
[39]   Multiple-tone estimation by IEEE standard 1057 and the expectation-maximization algorithm [J].
Andersson, T ;
Händel, P .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2005, 54 (05) :1833-1839
[40]   Two Time Point MS Lesion Segmentation in Brain MRI: An Expectation-Maximization Framework [J].
Jain, Saurabh ;
Ribbens, Annemie ;
Sima, Diana M. ;
Cambron, Melissa ;
De Keyser, Jacques ;
Wang, Chenyu ;
Barnett, Michael H. ;
Van Huffel, Sabine ;
Maes, Frederik ;
Smeets, Dirk .
FRONTIERS IN NEUROSCIENCE, 2016, 10