Hydrogenated TiO2/ZnO heterojunction nanorod arrays with enhanced performance for photoelectrochemical water splitting

被引:71
|
作者
Feng, Wenjian [1 ]
Lin, Liangyou [1 ]
Li, Haijin [1 ]
Chi, Bo [1 ]
Pu, Jian [1 ]
Li, Jian [1 ]
机构
[1] Huazhong Univ Sci & Technol, Ctr Fuel Cell Innovat, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Peoples R China
关键词
Hydrogenation; Heterojunction; Nanorod arrays; Photoelectrochemical cells; CORE-SHELL NANOWIRES; NANOTUBE ARRAYS; THIN-FILMS; ZNO NANORODS; NANOPARTICLES; NANOSTRUCTURES; MECHANISM; ANATASE; RUTILE; TIN;
D O I
10.1016/j.ijhydene.2016.10.087
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Novel hydrogenated TiO2/ZnO heterojunction nanorod arrays as photoanodes for efficient photoelectrochemical cells are investigated in this paper. A facial solution coating method is used to prepare the heterojunction structure and then hydrogenated heterojunction is obtained by annealed in hydrogen atmosphere. The enhanced optical absorption is observed for the hydrogenated TiO2/ZnO heterojunction. The hydrogenated TiO2/ZnO heterojunction yields improved photocurrent density, which is higher than pure TiO2 nanorods and TiO2/ZnO heterojunction. The ability to gain excellent photoelectrochemical properties with hydrogenated TiO2/ZnO heterojunction nanorod arrays may provide a promising route for high performance photoelectrochemical cells. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3938 / 3946
页数:9
相关论文
共 50 条
  • [21] Effect of carboxyl group on photoelectrochemical performance of TiO2 nanowire arrays for water splitting
    Ding, Yibo
    Jiang, Chenfeng
    Sun, Yi
    Zhang, Xiaoyan
    Ma, Xiaoqing
    NANOTECHNOLOGY, 2024, 35 (46)
  • [22] In2S3 Modified ZnO Nanorod Arrays for Photoelectrochemical Water Splitting
    Zhang, Wei
    Gao, Mengdi
    Chen, Hao
    Zhang, Lina
    2017 32ND YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2017, : 1037 - 1041
  • [23] CeO2/TiO2 Heterojunction Nanotube Arrays for Highly Efficient Visible-Light Photoelectrochemical Water Splitting
    Lin, Shi -Wei
    Tong, Mei-Hong
    Chen, Yan-Xin
    Chen, Rui
    Zhao, Hai-Peng
    Jiang, Xia
    Yang, Kai
    Lu, Can-Zhong
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (02) : 1093 - 1102
  • [24] ZnO@TiO2 core-shell nanorod arrays with enhanced photoelectrochemical performance
    Guo, Daoyou
    Wang, Jinbin
    Cui, Can
    Li, Peigang
    Zhong, Xiangli
    Wang, Fang
    Yuan, Shuoguo
    Zhang, Kedong
    Zhou, Yichun
    SOLAR ENERGY, 2013, 95 : 237 - 245
  • [25] Optimization of photoelectrochemical water splitting performance on hierarchical TiO2 nanotube arrays
    Zhang, Zhonghai
    Wang, Peng
    ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (04) : 6506 - 6512
  • [26] Double-shelled ZnO/TiO2/CdS nanorod arrays for enhanced photoelectrocatalytic performance
    Yang, Chao
    Lv, Yanqi
    Zhang, Heng
    Zhou, Xingfu
    JOURNAL OF POROUS MATERIALS, 2019, 26 (03) : 903 - 912
  • [27] An innovative method to quickly and simply prepare TiO2 nanorod arrays and improve their performance in photo water splitting
    Su, Yuh-Fan
    Lee, Mong-Chieh
    Wang, Guan-Bo
    Shih, Yang-Hsin
    CHEMICAL ENGINEERING JOURNAL, 2014, 253 : 274 - 280
  • [28] Heterojunction and Oxygen Vacancy Modification of ZnO Nanorod Array Photoanode for Enhanced Photoelectrochemical Water Splitting
    Long, Xuefeng
    Li, Feng
    Gao, Lili
    Hu, Yiping
    Hu, Haiguo
    Jin, Jun
    Ma, Jiantai
    CHEMSUSCHEM, 2018, 11 (23) : 4094 - 4101
  • [29] Composite of Cobalt-C3N4 on TiO2 Nanorod Arrays as Co-catalyst for Enhanced Photoelectrochemical Water Splitting
    Li, Yuangang
    Shang, Weike
    Li, Huajing
    Yang, Mengru
    Shi, Shaosen
    Li, Jin
    Huang, Chenyu
    Zhou, Anning
    CHEMISTRYSELECT, 2021, 6 (17): : 4319 - 4329
  • [30] Reduced TiO2 nanotube arrays for photoelectrochemical water splitting
    Kang, Qing
    Cao, Junyu
    Zhang, Yuanjian
    Liu, Lequan
    Xu, Hua
    Ye, Jinhua
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (18) : 5766 - 5774