Machine Learning Prediction of the Critical Cooling Rate for Metallic Glasses from Expanded Datasets and Elemental Features

被引:18
作者
Afflerbach, Benjamin T. [1 ]
Francis, Carter [1 ]
Schultz, Lane E. [1 ]
Spethson, Janine [1 ]
Meschke, Vanessa [1 ]
Strand, Elliot [1 ]
Ward, Logan [2 ]
Perepezko, John H. [1 ]
Thoma, Dan [1 ]
Voyles, Paul M. [1 ]
Szlufarska, Izabela [1 ]
Morgan, Dane [1 ]
机构
[1] Univ Wisconsin, Madison, WI 53706 USA
[2] Argonne Natl Lab, Lemont, IL 60439 USA
关键词
FORMING ABILITY; THERMAL-STABILITY; ZR; MO; LIQUID;
D O I
10.1021/acs.chemmater.1c03542
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We use a random forest (RF) model to predict the critical cooling rate (R-C) for glass formation of various alloys from features of their constituent elements. The RF model was trained on a database that integrates multiple sources of direct and indirect R-C data for metallic glasses to expand the directly measured R-C database of less than 100 values to a training set of over 2000 values. The model error on 5-fold cross-validation (CV) is 0.66 orders of magnitude in K/s. The error on leave-out-one-group CV on alloy system groups is 0.59 log units in K/s when the target alloy constituents appear more than 500 times in training data. Using this model, we make predictions for the set of compositions with melt-spun glasses in the database and for the full set of quaternary alloys that have constituents which appear more than 500 times in training data. These predictions identify a number of potential new bulk metallic glass systems for future study, but the model is most useful for the identification of alloy systems likely to contain good glass formers rather than detailed discovery of bulk glass composition regions within known glassy systems.
引用
收藏
页码:2945 / 2954
页数:10
相关论文
共 43 条
[1]   CRYSTALLIZATION CHARACTERISTICS OF FE-ZR METALLIC GLASSES FROM FE43ZR57 TO FE20ZR80 [J].
ALTOUNIAN, Z ;
VOLKERT, CA ;
STROMOLSEN, JO .
JOURNAL OF APPLIED PHYSICS, 1985, 57 (06) :1777-1782
[2]   Thermodynamics and kinetics of bulk metallic glass [J].
Busch, R. ;
Schroers, J. ;
Wang, W. H. .
MRS BULLETIN, 2007, 32 (08) :620-623
[3]   Critical cooling rate and thermal stability of Fe-Co-Zr-Y-Cr-Mo-B amorphous alloy [J].
Chen, QJ ;
Fan, HB ;
Shen, J ;
Sun, JF ;
Lu, ZP .
JOURNAL OF ALLOYS AND COMPOUNDS, 2006, 407 (1-2) :125-128
[4]  
Davies H. A., 1978, Rapidly Quenched Metals III, P1
[5]   Critical feature space for predicting the glass forming ability of metallic alloys revealed by machine learning [J].
Deng, Binghui ;
Zhang, Yali .
CHEMICAL PHYSICS, 2020, 538
[6]   Ti-Cu-Ni shape memory bulk metallic glass composites [J].
Gargarella, P. ;
Pauly, S. ;
Song, K. K. ;
Hu, J. ;
Barekar, N. S. ;
Khoshkhoo, M. Samadi ;
Teresiak, A. ;
Wendrock, H. ;
Kuehn, U. ;
Ruffing, C. ;
Kerscher, E. ;
Eckert, J. .
ACTA MATERIALIA, 2013, 61 (01) :151-162
[7]  
Horvath P., MODAL MODULAR ACTIVE, P1
[8]   Critical cooling rate and thermal stability for a Ti-Zr-Ni-Cu-Be metallic glass [J].
Huang, Yongjiang ;
Shen, Jun ;
Chen, John J. J. ;
Sun, Jianfei .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 477 (1-2) :920-924
[9]   Stabilization of metallic supercooled liquid and bulk amorphous alloys [J].
Inoue, A .
ACTA MATERIALIA, 2000, 48 (01) :279-306
[10]   Recent progress in bulk glassy alloys [J].
Inoue, A ;
Takeuchi, A .
MATERIALS TRANSACTIONS, 2002, 43 (08) :1892-1906