Dynamic protein folding at the surface of stimuli-responsive peptide fibrils

被引:7
|
作者
Nagarkar, Radhika P. [1 ]
Miller, Stephen E. [2 ]
Zhong, Sheng [3 ]
Pochan, Darrin J. [3 ]
Schneider, Joel P. [2 ]
机构
[1] Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA
[2] NCI, Biol Chem Lab, NIH, Frederick, MD 21702 USA
[3] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
self-assembling peptide; stimuli-responsive material; hydrogel; SELF-ASSEMBLING PEPTIDE; DESIGNED PEPTIDE; COILED COILS; HYDROGELS; NETWORK; SPECTROSCOPY; AMYLOIDS;
D O I
10.1002/pro.3394
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The repetitive self-assembled structure of amyloid can serve as inspiration to design functional materials. Herein, we describe the design of /6, a peptide that contains distinct -helical and -structure forming domains. The folding and association state of each domain can be controlled by temperature. At low temperatures, the -domain favors a coiled-coil state while the -domain is unstructured. Irreversible fibril formation via self-assembly of the -domain is triggered at high temperatures where the -domain is unfolded. Resultant fibrils serve as templates upon which reversible coiled coil formation of the -domain can be thermally controlled. At concentrations of /62.5 wt%, the peptide forms a mechanically defined hydrogel highlighting the possibility of designing materials whose function can be actively modulated by controlling the folded state of proteins displayed from the surface of fibrils that constitute the gel.
引用
收藏
页码:1243 / 1251
页数:9
相关论文
共 50 条
  • [41] Stimuli-Responsive Supramolecular Gelation in Ferrocene-Peptide Conjugates
    Afrasiabi, Rouzbeh
    Kraatz, Heinz-Bernhard
    CHEMISTRY-A EUROPEAN JOURNAL, 2013, 19 (51) : 17296 - 17300
  • [42] Stimuli-responsive α-helical peptide gatekeepers for mesoporous silica nanocarriers
    Lee, Jeonghun
    Han, Seungjong
    Lee, Jinyoung
    Choi, Minhyuek
    Kim, Chulhee
    NEW JOURNAL OF CHEMISTRY, 2017, 41 (15) : 6969 - 6972
  • [43] Stimuli-responsive surfactants
    Brown, Paul
    Butts, Craig P.
    Eastoe, Julian
    SOFT MATTER, 2013, 9 (08) : 2365 - 2374
  • [44] Stimuli-responsive membranes
    Wandera, Daniel
    Wickramasinghe, S. Ranil
    Husson, Scott M.
    JOURNAL OF MEMBRANE SCIENCE, 2010, 357 (1-2) : 6 - 35
  • [45] Stimuli-Responsive Nanotheranostics
    Hou, Yanglong
    Bu, Wenbo
    Ai, Hua
    Lu, Zheng-Rong
    Lammers, Twan
    ADVANCED HEALTHCARE MATERIALS, 2021, 10 (05)
  • [46] Stimuli-responsive metallopolymers
    Zhang, Kenneth Yin
    Liu, Shujuan
    Zhao, Qiang
    Huang, Wei
    COORDINATION CHEMISTRY REVIEWS, 2016, 319 : 180 - 195
  • [47] Surface modification of mammalian cells with stimuli-responsive polymers
    Iwasaki, Yasuhiko
    Sakiyama, Mizuki
    Fujii, Shuetsu
    Yusa, Shin-ichi
    CHEMICAL COMMUNICATIONS, 2013, 49 (71) : 7824 - 7826
  • [48] Stimuli-Responsive Polymeric Systems for Controlled Protein and Peptide Delivery: Future Implications for Ocular Delivery
    Mahlumba, Pakama
    Choonara, Yahya E.
    Kumar, Pradeep
    du Toit, Lisa C.
    Pillay, Viness
    MOLECULES, 2016, 21 (08):
  • [49] Controlling surface energy and wetability with stimuli-responsive coatings
    Pattillo, Christopher C.
    Strange, Gregory A.
    Dirlam, Philip T.
    Costanzo, Philip J.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [50] Stimuli-responsive block copolymer-protein hybrids
    Sumerlin, Brent S.
    Li, Ming
    Li, Hongmei
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243