Ulam stability for nonlocal differential equations involving the Hilfer-Katugampola fractional derivative

被引:3
|
作者
Benchohra, Mouffak [1 ,2 ]
Bouriah, Soufyane [1 ,3 ]
Henderson, Johnny [4 ]
机构
[1] Djillali Liabes Univ Sidi Bel Abbes, Math Lab, POB 89, Sidi Bel Abbes 22000, Algeria
[2] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[3] Hassiba Benbouali Univ, Fac Exact Sci & Informat, Dept Math, POB 151, Chlef 02000, Algeria
[4] Baylor Univ, Dept Math, Waco, TX 76798 USA
关键词
Hilfer-Katugampola fractional derivative; Nonlocal initial value problem; Existence; Uniqueness; Stability; Fixed point;
D O I
10.1007/s13370-020-00864-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish the existence and uniqueness of solutions to nonlocal initial value problem for differential equations with Hilfer-Katugampola type fractional derivative, also, the stability of this class of problem. The arguments are based upon the Banach contraction principle, and Schaefer's fixed point theorem. An example is included to show the applicability of our results.
引用
收藏
页码:829 / 851
页数:23
相关论文
共 50 条
  • [31] EXISTENCE AND STABILITY RESULTS TO A CLASS OF FRACTIONAL RANDOM IMPLICIT DIFFERENTIAL EQUATIONS INVOLVING A GENERALIZED HILFER FRACTIONAL DERIVATIVE
    Jarad, Fahd
    Harikrishnan, Sugumaran
    Shah, Kamal
    Kanagarajan, Kuppusamy
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (03): : 723 - 739
  • [32] Existence and Ulam Stability Results for Fractional Differential Equations with Mixed Nonlocal Conditions
    Lachouri, A.
    Ardjouni, A.
    Djoudi, A.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2021, 11 (02): : 78 - 97
  • [33] Existence and Stability for Fractional Differential Equations with a ψ-Hilfer Fractional Derivative in the Caputo Sense
    He, Wenchang
    Jin, Yuhang
    Wang, Luyao
    Cai, Ning
    Mu, Jia
    MATHEMATICS, 2024, 12 (20)
  • [34] New results on nonlocal functional integro-differential equations via Hilfer fractional derivative
    Subashini, R.
    Jothimani, K.
    Nisar, Kottakkaran Sooppy
    Ravichandran, C.
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) : 2891 - 2899
  • [35] ON RANDOM FRACTIONAL DIFFERENTIAL COUPLED SYSTEMS WITH HILFER–KATUGAMPOLA FRACTIONAL DERIVATIVE IN BANACH SPACES
    Fredj F.
    Hammouche H.
    Salim A.
    Benchohra M.
    Journal of Mathematical Sciences, 2025, 289 (2) : 200 - 218
  • [36] NULL CONTROLLABILITY OF NONLOCAL HILFER FRACTIONAL STOCHASTIC DIFFERENTIAL EQUATIONS
    Wang, Jinrong
    Ahmed, Hamdy M.
    MISKOLC MATHEMATICAL NOTES, 2017, 18 (02) : 1073 - 1083
  • [37] Using the Hilfer–Katugampola fractional derivative in initial-value Mathieu fractional differential equations with application to a particle in the plane
    Amel Berhail
    Nora Tabouche
    Jehad Alzabut
    Mohammad Esmael Samei
    Advances in Continuous and Discrete Models, 2022
  • [38] Existence and Ulam stability for impulsive generalized Hilfer-type fractional differential equations
    Abdelkrim Salim
    Mouffak Benchohra
    Erdal Karapınar
    Jamal Eddine Lazreg
    Advances in Difference Equations, 2020
  • [39] Existence and Ulam stability for impulsive generalized Hilfer-type fractional differential equations
    Salim, Abdelkrim
    Benchohra, Mouffak
    Karapinar, Erdal
    Lazreg, Jamal Eddine
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [40] Ulam-Hyers type stability for ψ-Hilfer fractional differential equations with impulses and delay
    Lima, K. B.
    Sousa, J. Vanterler da C.
    de Oliveira, E. Capelas
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (08)