Ulam stability for nonlocal differential equations involving the Hilfer-Katugampola fractional derivative

被引:3
作者
Benchohra, Mouffak [1 ,2 ]
Bouriah, Soufyane [1 ,3 ]
Henderson, Johnny [4 ]
机构
[1] Djillali Liabes Univ Sidi Bel Abbes, Math Lab, POB 89, Sidi Bel Abbes 22000, Algeria
[2] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[3] Hassiba Benbouali Univ, Fac Exact Sci & Informat, Dept Math, POB 151, Chlef 02000, Algeria
[4] Baylor Univ, Dept Math, Waco, TX 76798 USA
关键词
Hilfer-Katugampola fractional derivative; Nonlocal initial value problem; Existence; Uniqueness; Stability; Fixed point;
D O I
10.1007/s13370-020-00864-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish the existence and uniqueness of solutions to nonlocal initial value problem for differential equations with Hilfer-Katugampola type fractional derivative, also, the stability of this class of problem. The arguments are based upon the Banach contraction principle, and Schaefer's fixed point theorem. An example is included to show the applicability of our results.
引用
收藏
页码:829 / 851
页数:23
相关论文
共 35 条
[1]  
Abbas S, 2018, DEGRUYTER SER NONLIN, V26, P298, DOI 10.1515/9783110553819-010
[2]  
Abbas S., 2015, Advanced Fractional Differential and Integral Equations
[3]  
Abbas S., 2012, Topics in Fractional Differential Equations, DOI 10.1007/978-1-4614-4036-9
[4]  
Adjabi Y, 2016, J COMPUT ANAL APPL, V21, P661
[5]   On Generalized Fractional Operators and a Gronwall Type Inequality with Applications [J].
Adjabi, Yassine ;
Jarad, Fahd ;
Abdeljawad, Thabet .
FILOMAT, 2017, 31 (17) :5457-5473
[6]  
Ahmad, 2014, ABSTR APPL ANAL, V11
[7]  
Ahmad B., 2017, Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities, DOI DOI 10.1007/978-3-319-52141-1
[8]   A class of differential equations of fractional order with multi-point boundary conditions [J].
Ahmad, Bashir ;
Nieto, Juan J. .
GEORGIAN MATHEMATICAL JOURNAL, 2014, 21 (03) :243-248
[9]   Fractional Differential Equations With Dependence on the Caputo-Katugampola Derivative [J].
Almeida, Ricardo ;
Malinowska, Agnieszka B. ;
Odzijewicz, Tatiana .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (06)
[10]   On Caputo type sequential fractional differential equations with nonlocal integral boundary conditions [J].
Alsaedi, Ahmed ;
Ntouyas, Sotiris K. ;
Agarwal, Ravi P. ;
Ahmad, Bashir .
ADVANCES IN DIFFERENCE EQUATIONS, 2015, :1-12