ON SUBMANIFOLDS WITH TAMED SECOND FUNDAMENTAL FORM

被引:8
作者
Bessa, G. Pacelli
Costa, M. Silvana
机构
关键词
COMPLETE MINIMAL-SURFACES; CURVATURE;
D O I
10.1017/S0017089509990085
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on the ideas of Bessa, Jorge and Montenegro (Comm. Anal. Geom., vol. 15, no. 4, 2007, pp. 725-732) we show that a complete submanifold M with tamed second fundamental form in a complete Riemannian manifold N with sectional curvature K-N <= kappa <= 0 is proper (compact if N is compact). In addition, if N is Hadamard, then M has finite topology. We also show that the fundamental tone is an obstruction for a Riemannian manifold to be realised as submanifold with tan-led second fundamental form of a Hadamard manifold with sectional curvature bounded below.
引用
收藏
页码:669 / 680
页数:12
相关论文
共 16 条
[1]  
ANDERSON M, 1985, COMPACTIFICATI UNPUB
[2]  
BARTA J., 1937, CR HEBD ACAD SCI, V204, P472
[3]  
Bessa GP, 2007, COMMUN ANAL GEOM, V15, P725
[4]   An extension of Barta's Theorem and geometric applications [J].
Bessa, G. Pacelli ;
Montenegro, J. Fabio .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2007, 31 (04) :345-362
[5]  
Bessa GP, 2009, P AM MATH SOC, V137, P1093
[6]  
CHEEGER J, 1991, LECT NOTES MATH, V1504, P1
[7]   COMPLETE MINIMAL SURFACES IN EUCLIDEAN N-SPACE [J].
CHERN, SS ;
OSSERMAN, R .
JOURNAL D ANALYSE MATHEMATIQUE, 1967, 19 :15-&
[8]  
DUBROVIN BA, 1985, GRADUATE TEXTS MATH, V104
[9]   AN ESTIMATE FOR THE CURVATURE OF BOUNDED SUB-MANIFOLDS [J].
JORGE, L ;
KOUTROUFIOTIS, D .
AMERICAN JOURNAL OF MATHEMATICS, 1981, 103 (04) :711-725
[10]   THE TOPOLOGY OF COMPLETE MINIMAL-SURFACES OF FINITE TOTAL GAUSSIAN CURVATURE [J].
JORGE, LP ;
MEEKS, WH .
TOPOLOGY, 1983, 22 (02) :203-221