The dual F-signature is a numerical invariant defined via the Frobenius morphism in positive characteristic. It is known that the dual F-signature characterizes some singularities. However, the value of the dual F-signature is not known except in only a few cases. In this paper, we determine the dual F-signature of Cohen-Macaulay modules over two-dimensional rational double points. The method for determining the dual F-signature is also valid for determining the Hilbert-Kunz multiplicity. We discuss it in Appendix.
机构:
Nagoya Univ, Grad Sch Math, Chikusa Ku, Furocho, Nagoya, Aichi 4648602, Japan
Univ Tokyo, Universe WPI, Kavli Inst Phys & Math, UTIAS, Kashiwa, Chiba 2778583, JapanNagoya Univ, Grad Sch Math, Chikusa Ku, Furocho, Nagoya, Aichi 4648602, Japan
机构:
Nara Univ Educ, Takabatake, Nara 6308528, JapanUniv Nebraska, Dept Math, Lincoln, NE 68588 USA
Araya, Tokuji
Iima, Kei-ichiro
论文数: 0引用数: 0
h-index: 0
机构:
Nara Natl Coll Technol, Dept Liberal Studies, Yamato Koriyama, Nara 6391080, JapanUniv Nebraska, Dept Math, Lincoln, NE 68588 USA
Iima, Kei-ichiro
Takahashi, Ryo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nebraska, Dept Math, Lincoln, NE 68588 USA
Shinshu Univ, Fac Sci, Dept Math Sci, Matsumoto, Nagano 3908621, JapanUniv Nebraska, Dept Math, Lincoln, NE 68588 USA