Analysis of Deep Learning-Based Image Steganalysis Methods Under Different Steganographic Algorithms

被引:2
作者
Dwaik, AlaaIdin [1 ]
Belkhouche, Yassine [1 ]
机构
[1] Missouri State Univ, Springfield, MO 65804 USA
来源
ADVANCES IN VISUAL COMPUTING, ISVC 2022, PT II | 2022年 / 13599卷
关键词
Image steganalysis; Deep learning; Convolutional neural network; Image filtering; NETWORK;
D O I
10.1007/978-3-031-20716-7_22
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we present an experiment to evaluate the performance of deep-learning-based steganalysis methods under different steganographic algorithms and payloads. We designed and implemented a simple and efficient convolutional neural network (CNN) steganalysis model. This model combines SRM [10] filters and 2D Gabor filters to initialize the CNN's filters in the feature extraction layers. The extracted features are passed to a fully connected neural network classifier to detect images containing hidden messages. We generated several datasets using different steganographic algorithms and payloads to train and test our CNN model. We designed several experiments to evaluate the detection rate of the proposed model under separate training-testing conditions.
引用
收藏
页码:284 / 294
页数:11
相关论文
共 27 条
[1]  
[Anonymous], 2017, Electron. Imag.
[2]   Hybrid convolutional neural network architecture driven by residual features for steganalysis of spatial steganographic algorithms [J].
Arivazhagan, S. ;
Amrutha, E. ;
Sylvia Lilly Jebarani, W. ;
Veena, S. T. .
NEURAL COMPUTING & APPLICATIONS, 2021, 33 (17) :11465-11485
[3]  
Bas Patrick, 2011, Information Hiding. 13th International Conference, IH 2011. Revised Selected Papers, P59, DOI 10.1007/978-3-642-24178-9_5
[4]   Deep Residual Network for Steganalysis of Digital Images [J].
Boroumand, Mehdi ;
Chen, Mo ;
Fridrich, Jessica .
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2019, 14 (05) :1181-1193
[5]  
Chandramouli R., 2003, International Workshop on Digital Watermarking, P35, DOI [10.1007/978-3-540-24624-4_3, DOI 10.1007/978-3-540-24624-4_3]
[6]   JPEG-Phase-Aware Convolutional Neural Network for Steganalysis of JPEG Images [J].
Chen, Mo ;
Sedighi, Vahid ;
Boroumand, Mehdi ;
Fridrich, Jessica .
IH&MMSEC'17: PROCEEDINGS OF THE 2017 ACM WORKSHOP ON INFORMATION HIDING AND MULTIMEDIA SECURITY, 2017, :75-84
[7]  
El Beji Rabii, 2018, Digital Economy. Emerging Technologies and Business Innovation. Third International Conference, ICDEc 2018. Proceedings. Lecture Notes in Business Information Processing (LNBIP 325), P119, DOI 10.1007/978-3-319-97749-2_9
[8]  
English R., 2010, 2010 International Conference of Soft Computing and Pattern Recognition (SoCPaR 2010), P448, DOI 10.1109/SOCPAR.2010.5686507
[9]   Rich Models for Steganalysis of Digital Images [J].
Fridrich, Jessica ;
Kodovsky, Jan .
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2012, 7 (03) :868-882
[10]  
Holub V, 2012, Steganographic algorithms