Biodegradation of Bisphenol A, Bisphenol F and Bisphenol S in Seawater

被引:214
作者
Danzl, Erica [1 ]
Sei, Kazunari [1 ]
Soda, Satoshi [1 ]
Ike, Michihiko [1 ]
Fujita, Masanori [1 ]
机构
[1] Osaka Univ, Grad Sch Engn, Div Sustainable Energy & Environm Engn, Suita, Osaka 5650871, Japan
关键词
Biodegradation; bisphenol A (BPA); bisphenol (BPF); bisphenol S (BPS); TOC Handai; sea die-away; DIGLYCIDYL ETHER BFDGE; RISK-ASSESSMENT; DEGRADATION; LIQUID; WATER; SYSTEMS; SURFACE;
D O I
10.3390/ijerph6041472
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A group of compounds structurally similar to bis(4-hydroxyphenyl)propane (bisphenol A, BPA) are called bisphenols (BPs), and some of them can partially replace BPA in industrial applications. The production and consumption of BPs other than BPA, especially those of bis(4-hydroxyphenyl) methane (bisphenol F, BPF) and bis(4-hydroxyphenyl) sulfone (bisphenol S, BPS), have increased recently, leading to their detection as contaminants in the aquatic environment. The three compounds tested 100% positive for estrus response in 1936 and concerns about their health risks have been increasing. Abundant data on degradation of bisphenols (BPs) has been published, but results for biodegradation of BPs in seawater are lacking. However, several research groups have focused on this topic recently. In this study, the biodegradation behaviors of three BPs, namely BPA, BPF and BPS, in seawater were investigated using TOC Handai (TOC, potential test) and river (sea) die-away (SDA, simulation test) methods, which are both a kind of river-die-away test. The main difference between the tests is that indigenous microcosms remain in the sampled raw seawater for the SDA experiments, but they are removed through filtration and dispersed into artificial seawater for the TOC experiments. The BPs, except for BPS, were degraded using both methods. The SDA method produced better biodegradation results than the TOC method in terms of degradation time (both lag and degradation periods). Biodegradation efficiencies were measured at 75-100% using the SDA method and 13-63% using the TOC method. BPF showed better degradation efficiency than BPA, BPF was > 92% and BPA 83% depleted according to the SDA tests. BPS degradation was not observed. As a conclusion, the biodegradability of the three BPs in seawater could be ranked as BPF > BPA >> BPS. BPF is more biodegradable than BPA in seawater and BPS is more likely to accumulate in the aquatic environment. BPS poses a lower risk to human health and to the environment than BPA or BPF but it is not amenable to biodegradation and might be persistent and become an ecological burden. Thus other degradation methods need to be found for the removal of BPS in the environment.
引用
收藏
页码:1472 / 1484
页数:13
相关论文
共 20 条
[1]   Comparative studies of the leachate of an industrial landfill by gas chromatography mass spectrometry, liquid chromatography nuclear magnetic resonance and liquid chromatography mass spectrometry [J].
Benfenati, E ;
Pierucci, P ;
Fanelli, R ;
Preiss, A ;
Godejohann, M ;
Astratov, M ;
Levsen, K ;
Barceló, D .
JOURNAL OF CHROMATOGRAPHY A, 1999, 831 (02) :243-256
[2]   Acute toxicity, mutagenicity, and estrogenicity of bisphenol-A and other bisphenols [J].
Chen, MY ;
Ike, M ;
Fujita, M .
ENVIRONMENTAL TOXICOLOGY, 2002, 17 (01) :80-86
[3]  
DODDS E. C, 1936, NATURE [LONDON], V137, P996, DOI 10.1038/137996a0
[4]   DEGRADATION OF BISPHENOL-A IN NATURAL-WATERS [J].
DORN, PB ;
CHOU, CS ;
GENTEMPO, JJ .
CHEMOSPHERE, 1987, 16 (07) :1501-1507
[5]   Occurrence of phthalates and bisphenol A and F in the environment [J].
Fromme, H ;
Küchler, T ;
Otto, T ;
Pilz, K ;
Müller, J ;
Wenzel, A .
WATER RESEARCH, 2002, 36 (06) :1429-1438
[6]   Bisphenol A:: emissions from point sources [J].
Fürhacker, M ;
Scharf, S ;
Weber, H .
CHEMOSPHERE, 2000, 41 (05) :751-756
[7]   Biodegradation of a variety of bisphenols under aerobic and anaerobic conditions [J].
Ike, M. ;
Chen, M. Y. ;
Danzl, E. ;
Sei, K. ;
Fujita, M. .
WATER SCIENCE AND TECHNOLOGY, 2006, 53 (06) :153-159
[8]   Bisphenol A degradation in seawater is different from that in river water [J].
Kang, JH ;
Kondo, F .
CHEMOSPHERE, 2005, 60 (09) :1288-1292
[9]   Liquid chromatography-tandem mass spectrometric analysis of surface and waste water with atmospheric pressure chemical ionisation - I: instrumentation [J].
Kienhuis, PGM ;
Geerdink, RB .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2000, 19 (04) :249-259
[10]   Biodegradation of bisphenol a in aquatic environments: River die-away [J].
Klecka, GM ;
Gonsior, SJ ;
West, RJ ;
Goodwin, PA ;
Markham, DA .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2001, 20 (12) :2725-2735