Lieb-Thirring inequalities for Jacobi matrices

被引:42
作者
Hundertmark, D [1 ]
Simon, B [1 ]
机构
[1] CALTECH, Dept Math 253 37, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jath.2002.3704
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a Jacobi matrix J on l(2) (Z(+)) with Ju(n) = a(n-1)u(n-1) + b(n)u(n) + a(n)u(n+1), we prove that Sigma(\E\>2)(E-2 - 4)(1/2) less than or equal to Sigma(n)\b(n)\ + 4Sigma(n)\a(n) - 1\. We also prove bounds on higher moments and some related results in higher dimension. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:106 / 130
页数:25
相关论文
共 22 条
[1]   SEMICLASSICAL BOUNDS FOR EIGENVALUES OF SCHRODINGER OPERATORS [J].
AIZENMAN, M ;
LIEB, EH .
PHYSICS LETTERS A, 1978, 66 (06) :427-429
[2]  
[Anonymous], STUDIES MATH PHYS ES
[4]  
BIRMAN M. SH., 1966, Eleven Papers in Analysis, AMS Transl. 2 no. 53, V53, P23
[5]   ORTHOGONAL POLYNOMIALS .2. [J].
CASE, KM .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (07) :1435-1440
[6]   ORTHOGONAL POLYNOMIALS FROM VIEWPOINT OF SCATTERING THEORY [J].
CASE, KM .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (12) :2166-2174
[7]   ORTHOGONAL POLYNOMIALS AND MEASURES WITH FINITELY MANY POINT MASSES [J].
CHIHARA, TS ;
NEVAI, PG .
JOURNAL OF APPROXIMATION THEORY, 1982, 35 (04) :370-380
[8]   WEAK TYPE ESTIMATES FOR SINGULAR VALUES AND NUMBER OF BOUND-STATES OF SCHRODINGER OPERATORS [J].
CWIKEL, M .
ANNALS OF MATHEMATICS, 1977, 106 (01) :93-100
[9]   ON THE SPECTRA OF INFINITE-DIMENSIONAL JACOBI MATRICES [J].
GERONIMO, JS .
JOURNAL OF APPROXIMATION THEORY, 1988, 53 (03) :251-265