Anomalous diffusion in comb model with fractional dual-phase-lag constitutive relation

被引:11
作者
Liu, Lin [1 ]
Zheng, Liancun [1 ]
Chen, Yanping [1 ]
Liu, Fawang [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, GPO Box 2434, Brisbane, Qld 4001, Australia
基金
中国博士后科学基金;
关键词
Anomalous diffusion; Fractional derivative; Constitutive equation; Relaxation parameter; HYPERBOLIC HEAT-CONDUCTION; TRANSPORT; EQUATION; TISSUE; CELLS;
D O I
10.1016/j.camwa.2018.04.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A fractional dual-phase-lag constitutive relation is proposed to describe the anomalous diffusion in comb model. A novel governing equation with the Dirac delta function is formulated and the highest order is 1 + alpha which corresponds to a diffusion-wave equation. Solutions are obtained analytically with Laplace and Fourier transforms. Dynamic characteristics for the spatial and temporal evolution of particle distribution and the mean square displacement versus time with the effects of different parameters such as the fractional parameters and the relaxation parameters are analyzed and discussed in detail. Results show that the wave characteristic becomes stronger for a larger fractional parameter, a smaller microscopic relaxation parameter or a larger macroscopic one. For a larger alpha, a smaller beta, a larger macroscopic relaxation parameter or a smaller microscopic one, a novel oscillating distribution versus time is presented, and at this condition, the magnitude of mean square displacement is larger at the smaller time while larger at the larger time. Most important of all, the anomalous diffusion in comb model with a diffusion-wave equation corresponds to a subdiffusion behavior because of its special structure. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:245 / 256
页数:12
相关论文
共 46 条
  • [1] [Anonymous], 1999, FRACTIONAL DIFFERENT
  • [2] New interpretation of non-Fourier heat conduction in processed meat
    Antaki, PJ
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2005, 127 (02): : 189 - 193
  • [3] Arkhincheev V. E., 1991, Soviet Physics - JETP, V73, P161
  • [4] Random walks on the Comb model and its generalizations
    Arkhincheev, V. E.
    [J]. CHAOS, 2007, 17 (04)
  • [5] Superdiffusion on a comb structure
    Baskin, E
    Iomin, A
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (12) : 120603 - 1
  • [6] Diffusion and Subdiffusion of Interacting Particles on Comblike Structures
    Benichou, O.
    Illien, P.
    Oshanin, G.
    Sarracino, A.
    Voituriez, R.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (22)
  • [7] Neuronal activity regulates diffusion across the neck of dendritic spines
    Bloodgood, BL
    Sabatini, BL
    [J]. SCIENCE, 2005, 310 (5749) : 866 - 869
  • [8] DIFFUSION IN RANDOM STRUCTURES WITH A TOPOLOGICAL BIAS
    BUNDE, A
    HAVLIN, S
    STANLEY, HE
    TRUS, B
    WEISS, GH
    [J]. PHYSICAL REVIEW B, 1986, 34 (11): : 8129 - 8132
  • [9] Cattaneo C., 1948, Atti Sem. Mat. Fis. Univ. Modena, V3, P83, DOI [10.1007/978-3-642-11051-1_5, DOI 10.1007/978-3-642-11051-1_5]
  • [10] A variable-order time-fractional derivative model for chloride ions sub-diffusion in concrete structures
    Chen, Wen
    Zhang, Jianjun
    Zhang, Jinyang
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (01) : 76 - 92