Tuning Nonlinear Charge Transport between Integer and Fractional Quantum Hall States

被引:22
|
作者
Roddaro, Stefano [1 ,2 ]
Paradiso, Nicola [1 ,2 ]
Pellegrini, Vittorio [1 ,2 ]
Biasiol, Giorgio [3 ]
Sorba, Lucia [1 ,2 ,3 ]
Beltram, Fabio [1 ,2 ]
机构
[1] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[2] INFM, CNR, I-56126 Pisa, Italy
[3] INFM, Lab Nazl TASC, I-34012 Trieste, Italy
关键词
LUTTINGER LIQUID; EDGE;
D O I
10.1103/PhysRevLett.103.016802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Controllable point junctions between different quantum Hall phases are a necessary building block for the development of mesoscopic circuits based on fractionally charged quasiparticles. We demonstrate how particle-hole duality can be exploited to realize such point-contact junctions. We show an implementation for the case of two quantum Hall liquids at filling factors nu=1 and nu(*)< 1 in which both the fractional filling nu(*) and the coupling strength can be finely and independently tuned. A peculiar crossover from insulating to conducting behavior as nu(*) goes from 1/3 to 1 is observed. These results highlight the key role played on interedge tunneling by local charge depletion at the point contact.
引用
收藏
页数:4
相关论文
共 22 条
  • [1] Imaging the Conductance of Integer and Fractional Quantum Hall Edge States
    Pascher, Nikola
    Roessler, Clemens
    Ihn, Thomas
    Ensslin, Klaus
    Reichl, Christian
    Wegscheider, Werner
    PHYSICAL REVIEW X, 2014, 4 (01):
  • [2] Nonlinear quantum shock waves in fractional quantum hall edge states
    Bettelheim, E.
    Abanov, Alexander G.
    Wiegmann, P.
    PHYSICAL REVIEW LETTERS, 2006, 97 (24)
  • [3] Fractional Charges on an Integer Quantum Hall Edge
    Berg, E.
    Oreg, Y.
    Kim, E.-A.
    von Oppen, F.
    PHYSICAL REVIEW LETTERS, 2009, 102 (23)
  • [4] Charge Fractionalization in the Integer Quantum Hall Effect
    Inoue, Hiroyuki
    Grivnin, Anna
    Ofek, Nissim
    Neder, Izhar
    Heiblum, Moty
    Umansky, Vladimir
    Mahalu, Diana
    PHYSICAL REVIEW LETTERS, 2014, 112 (16)
  • [5] Fractional charge and fractional statistics in the quantum Hall effects
    Feldman, D. E.
    Halperin, Bertrand, I
    REPORTS ON PROGRESS IN PHYSICS, 2021, 84 (07)
  • [6] Robust integer and fractional helical modes in the quantum Hall effect
    Ronen, Yuval
    Cohen, Yonatan
    Banitt, Daniel
    Heiblum, Moty
    Umansky, Vladimir
    NATURE PHYSICS, 2018, 14 (04) : 411 - +
  • [7] FRACTIONAL QUANTUM HALL STATES IN NARROW CHANNELS
    YOSHIOKA, D
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1993, 62 (03) : 839 - 842
  • [8] Phenomenological theory of heat transport in the fractional quantum Hall effect
    Aharon-Steinberg, Amit
    Oreg, Yuval
    Stern, Ady
    PHYSICAL REVIEW B, 2019, 99 (04)
  • [9] Charge-conserving equilibration of quantum Hall edge states
    Idrisov, Edvin G.
    Levkivskyi, Ivan P.
    Sukhorukov, Eugene V.
    PHYSICAL REVIEW RESEARCH, 2025, 7 (01):
  • [10] Transport across the incompressible strip in the fractional quantum Hall effect regime
    Deviatov, E. V.
    Dolgopolov, V. T.
    Lorke, A.
    Reuter, D.
    Wieck, A. D.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (05) : 1232 - 1234