Simple Synthesis of Flower-like Manganese Dioxide Nanostructures on Cellulose Nanocrystals for High-Performance Supercapacitors and Wearable Electrodes

被引:38
作者
Chen, Lu-Min [1 ]
Yu, Hou-Yong [1 ,2 ]
Wang, Duan-Chao [1 ]
Yang, Ting [1 ]
Yao, Ju-Ming [1 ]
Tam, Kam Chiu [2 ]
机构
[1] Zhejiang Sci Tech Univ, Coll Mat & Text, Xiasha Higher Educ Pk Ave 2 928, Hangzhou 310018, Zhejiang, Peoples R China
[2] Univ Waterloo, Dept Chem Engn, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
关键词
Cellulose nanocrystal; Manganese dioxide; Supercapacitor; Electrochemical properties; HIGH-ENERGY; HIGH-POWER; ELECTROCHEMICAL PROPERTIES; CARBON; GRAPHENE/MNO2; COMPOSITES; AEROGELS; FOAM; TEXTILE; NANOROD;
D O I
10.1021/acssuschemeng.9b02287
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work first reports cellulose nanocrystal/manganese dioxide (CNC-MnO2) electrode composites with flower-like MnO2 nanostructures via facile one-step in situ controlled synthesis. The denser flower-shaped nanostructures of CNC-MnO2 composites improved the electrolyte/electrode contact interface, providing nano-channels for ions diffusion that enhanced both electrolyte infiltration and active material utilization. A large specific capacitance of 306.3 F g(-1) with high energy density was achieved due to good cycling stability and ultralow resistance. Moreover, the CNC-MnO2 composites were successfully assembled into flexible solid-state supercapacitors with good electrochemical performance, excellent bending stability, and light up a commercial light-emitting diode. This study provides a simple approach to combine a CNC-MnO2 composite electrode with commercial textile and conductive polymers (e.g., polypyrrole) to produce wearable electronic/energy devices.
引用
收藏
页码:11823 / 11831
页数:17
相关论文
共 49 条
[21]   WATER DIFFUSION IN WOOD PULP CELLULOSE FIBERS STUDIED BY MEANS OF THE PULSED GRADIENT SPIN-ECHO METHOD [J].
LI, TQ ;
HENRIKSSON, U ;
KLASON, T ;
ODBERG, L .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1992, 154 (02) :305-315
[22]   Preparation and electrochemical performances of α-MnO2 nanorod for supercapacitor [J].
Li, Yang ;
Xie, Huaqing ;
Wang, Jifeng ;
Chen, Lifei .
MATERIALS LETTERS, 2011, 65 (02) :403-405
[23]   Construction of functional cellulose aerogels via atmospheric drying chemically cross-linked and solvent exchanged cellulose nanofibrils [J].
Li, Yingzhan ;
Grishkewich, Nathan ;
Liu, Lingli ;
Wang, Chang ;
Tam, Kam C. ;
Liu, Shanqiu ;
Mao, Zhiping ;
Sui, Xiaofeng .
CHEMICAL ENGINEERING JOURNAL, 2019, 366 :531-538
[24]   Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation [J].
Liang, Shuhui ;
Bulgan, Fei Teng G. ;
Zong, Ruilong ;
Zhu, Yongfa .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (14) :5307-5315
[25]   Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High-Performance Pseudocapacitive Materials [J].
Liu, Jinping ;
Jiang, Jian ;
Cheng, Chuanwei ;
Li, Hongxing ;
Zhang, Jixuan ;
Gong, Hao ;
Fan, Hong Jin .
ADVANCED MATERIALS, 2011, 23 (18) :2076-+
[26]   One-step synthesis of graphene nanoribbon-MnO2 hybrids and their all-solid-state asymmetric supercapacitors [J].
Liu, Mingkai ;
Tjiu, Weng Weei ;
Pan, Jisheng ;
Zhang, Chao ;
Gao, Wei ;
Liu, Tianxi .
NANOSCALE, 2014, 6 (08) :4233-4242
[27]   Nitrogen-Doped Carbon Networks for High Energy Density Supercapacitors Derived from Polyaniline Coated Bacterial Cellulose [J].
Long, Conglai ;
Qi, Dongping ;
Wei, Tong ;
Yan, Jun ;
Jiang, Lili ;
Fan, Zhuangjun .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (25) :3953-3961
[28]   Controllable synthesis of MnO2 nanostructures anchored on graphite foam with different morphologies for a high-performance asymmetric supercapacitor [J].
Lv, Xingbin ;
Zhang, Hualian ;
Wang, Feifei ;
Hu, Zhufeng ;
Zhang, Yuxin ;
Zhang, Lili ;
Xie, Rui ;
Ji, Junyi .
CRYSTENGCOMM, 2018, 20 (12) :1690-1697
[29]   Materials for electrochemical capacitors [J].
Simon, Patrice ;
Gogotsi, Yury .
NATURE MATERIALS, 2008, 7 (11) :845-854
[30]   Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor [J].
Toupin, M ;
Brousse, T ;
Bélanger, D .
CHEMISTRY OF MATERIALS, 2004, 16 (16) :3184-3190