THE SHORT TIME ASYMPTOTICS OF NASH ENTROPY

被引:0
作者
Xu, Guoyi [1 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
Nash entropy; short time asymptotics; HEAT KERNEL; VARIABLE-COEFFICIENTS; COMPLETE MANIFOLDS; BEHAVIOR; EQUATION;
D O I
10.2140/pjm.2013.266.423
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M-n, g) be a complete Riemannian manifold with Rc >= -Kg, H(x, y, t) be the heat kernel on M-n, and H = (4 pi t)(-n/2)e(-f). Nash entropy is defined as N(H, t) = integral(Mn) (f H) d mu(x) - n/2. We study the asymptotic behavior of N(H, t) and partial derivative N(H, t)/partial derivative t as t -> 0(+) and get the asymptotic formulas at t = 0. In the appendix, we get a Hamilton-type upper bound for the Laplacian of the positive solution to the heat equation on such manifolds, which is itself interesting.
引用
收藏
页码:423 / 447
页数:25
相关论文
共 19 条
[1]  
[Anonymous], 2009, AMSIP STUDIES ADV MA
[2]   ON THE UPPER ESTIMATE OF THE HEAT KERNEL OF A COMPLETE RIEMANNIAN MANIFOLD [J].
CHENG, SY ;
LI, P ;
YAU, ST .
AMERICAN JOURNAL OF MATHEMATICS, 1981, 103 (05) :1021-1063
[3]  
Chow B, 2010, Mathematical Surveys and Monographs, V163
[4]  
Chow B., 2008, Mathematical Surveys and Monographs, V144
[5]   ASYMPTOTIC-BEHAVIOR OF FUNDAMENTAL-SOLUTIONS AND POTENTIAL-THEORY OF PARABOLIC OPERATORS WITH VARIABLE-COEFFICIENTS [J].
GAROFALO, N ;
LANCONELLI, E .
MATHEMATISCHE ANNALEN, 1989, 283 (02) :211-239
[6]  
Hamilton R. S., 1993, COMMUN ANAL GEOM, V1, P113
[7]  
Karp Leon, 1982, HEAT EQUATION UNPUB
[8]   Hamilton's gradient estimate for the heat kernel on complete manifolds [J].
Kotschwar, Brett L. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (09) :3013-3019
[9]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201
[10]  
Li P., 2012, CAMBRIDGE STUDIES AD, V134