Waveform-Sampling Electronics for a Whole-Body Time-of-Flight PET Scanner

被引:16
作者
Ashmanskas, W. J. [1 ]
LeGeyt, B. C. [1 ]
Newcomer, F. M. [2 ]
Panetta, J. V. [1 ]
Ryan, W. A. [1 ]
Van Berg, R. [2 ]
Wiener, R. I. [2 ]
Karp, J. S. [1 ,2 ]
机构
[1] Univ Penn, Dept Radiol, Phys & Instrumentat Grp, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
关键词
Fast timing; front-end electronics; field-programmable gate array (FPGA); PET instrumentation; time-of-flight PET; trigger systems; waveform sampling; PERFORMANCE; DETECTOR; SYSTEM; PILEUP;
D O I
10.1109/TNS.2014.2303119
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Waveform sampling is an appealing technique for instruments requiring precision time and pulse-height measurements. Sampling each photomultiplier tube (PMT) waveform at oscilloscope-like rates of several gigasamples per second enables one to process PMT signals digitally, which in turn makes it straightforward to optimize timing resolution and amplitude (energy and position) resolution in response to calibration effects, pile-up effects, and other systematic sources of waveform variation. We describe a system design and preliminary implementation that neatly maps waveform-sampling technology onto the LaPET prototype whole-body time-of-flight PET scanner that serves as the platform for testing this new technology.
引用
收藏
页码:1174 / 1181
页数:8
相关论文
共 50 条
  • [31] Investigation of time-of-flight benefits in an LYSO-based PET/CT scanner: A Monte Carlo study using GATE
    Geramifar, P.
    Ay, M. R.
    Zafarghandi, M. Shamsaie
    Sarkar, S.
    Loudos, G.
    Rahmim, A.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 641 (01) : 121 - 127
  • [32] A Proof-of-Concept Study of an In-Situ Partial-Ring Time-of-Flight PET Scanner for Proton Beam Verification
    Krishnamoorthy, Srilalan
    Teo, Boon-Keng K.
    Zou, Wei
    McDonough, James
    Karp, Joel S.
    Surti, Suleman
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2021, 5 (05) : 694 - 702
  • [33] Fourier rebinning and consistency equations for time-of-flight PET planograms
    Li, Yusheng
    Defrise, Michel
    Matej, Samuel
    Metzler, Scott D.
    INVERSE PROBLEMS, 2016, 32 (09)
  • [34] Design of a Time-of-Flight PET Imaging Probe
    Miyaoka, Robert S.
    Li, Xiaoli
    Hunter, William C. J.
    Yuan, Eric
    Lewellen, Tom K.
    2011 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2011, : 3661 - 3664
  • [35] New Consistency Equation for Time-of-Flight PET
    Defrise, Michel
    Panin, Vladimir Y.
    Casey, Michael E.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2013, 60 (01) : 124 - 133
  • [36] PETALO: Time-of-Flight PET with liquid xenon
    Ferrario, Paola
    Herrero-Bosch, Vicente
    Maria Benlloch-Rodriguez, Jose
    Romo-Luque, Carmen
    Jose Gomez-Cadenas, Juan
    2018 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE PROCEEDINGS (NSS/MIC), 2018,
  • [37] PETALO: Time-of-Flight PET with liquid xenon
    Romo-Luque, C.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2020, 958
  • [38] Axial Fourier Rebinning for Time-of-Flight PET
    Li, Yusheng
    Matej, Samuel
    Metzler, Scott D.
    2017 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2017,
  • [39] Physics and technology of time-of-flight PET detectors
    Schaart, Dennis R.
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (09)
  • [40] Performance of the Tachyon Time-of-Flight PET Camera
    Peng, Q.
    Choong, W. -S.
    Vu, C.
    Huber, J. S.
    Janecek, M.
    Wilson, D.
    Huesman, R. H.
    Qi, Jinyi
    Zhou, Jian
    Moses, W. W.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2015, 62 (01) : 111 - 119