Upper bound on the characters of the symmetric groups

被引:50
作者
Roichman, Y
机构
[1] Department of Mathematics, Harvard University, Cambridge
关键词
D O I
10.1007/s002220050083
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be a conjugacy class in the symmetric group S-n, and lambda be a partition of n. Let f(lambda) be the degree of the irreducible representation S-lambda, chi(lambda)(C) - the character of S-lambda at C, and r(lambda)(C) - the normalized character chi(lambda)(C)/f(lambda). We prove that there exist constants b>0 and 1>q>0 such that for n>4, for every conjugacy class C in S-n and every irreducible representation S-lambda of S-n \r(lambda)(C)\less than or equal to(max{q,lambda(1)/n,lambda(1)'/n})(b*supp(C)) where supp(C) is the number of non-fixed digits under the action of a permutation in C, lambda(1) is the size of the largest part in lambda, and lambda(1)', is the number of parts in lambda. The proof is obtained by enumeration of rim hook tableaux, the Hook formula and probabilistic arguments. Combinatorial, algebraic and statistical applications follow this result. In particular, we estimate the rate of mixing of random walks on the alternating groups with respect to conjugacy classes.
引用
收藏
页码:451 / 485
页数:35
相关论文
共 38 条
[1]   THE CONJUGACY CHARACTER OF SN TENDS TO BE REGULAR [J].
ADIN, RM ;
FRUMKIN, A .
ISRAEL JOURNAL OF MATHEMATICS, 1987, 59 (02) :234-240
[2]   STRONG UNIFORM TIMES AND FINITE RANDOM-WALKS [J].
ALDOUS, D ;
DIACONIS, P .
ADVANCES IN APPLIED MATHEMATICS, 1987, 8 (01) :69-97
[3]  
ANDREWS GE, 1976, ENCY MATH ITS APPLIC, V2
[4]  
[Anonymous], 1986, ASYMPTOTIC THEORY FI
[5]  
[Anonymous], COMMUNICATION
[6]  
BABAI L, 1990, ANN IEEE SYMP FOUND, P857
[7]   GENERATING A RANDOM PERMUTATION WITH RANDOM TRANSPOSITIONS [J].
DIACONIS, P ;
SHAHSHAHANI, M .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 57 (02) :159-179
[8]  
DIACONIS PW, 1988, IMS LECT NOTES, V11
[9]   RANDOM SHUFFLES AND GROUP-REPRESENTATIONS [J].
FLATTO, L ;
ODLYZKO, AM ;
WALES, DB .
ANNALS OF PROBABILITY, 1985, 13 (01) :154-178
[10]   THEOREM ABOUT THE CONJUGACY REPRESENTATION OF SN [J].
FRUMKIN, A .
ISRAEL JOURNAL OF MATHEMATICS, 1986, 55 (01) :121-128