Boundedness, Mittag-Leffler stability and asymptotical ω-periodicity of fractional-order fuzzy neural networks

被引:66
|
作者
Wu, Ailong [1 ,2 ,3 ]
Zeng, Zhigang [2 ]
机构
[1] Hubei Normal Univ, Coll Math & Stat, Huangshi 435002, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Automat, Wuhan 430074, Peoples R China
[3] Xi An Jiao Tong Univ, Inst Informat & Syst Sci, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional-order systems; Fuzzy neural networks; Boundedness; Mittag-Leffler stability; S-asymptotical omega-periodicity; TIME-VARYING DELAYS; GLOBAL EXPONENTIAL STABILITY; MARKOVIAN JUMPING PARAMETERS; REACTION-DIFFUSION; ROBUST STABILITY; SYNCHRONIZATION; CHAOS; IMPULSES; DISCRETE; EXISTENCE;
D O I
10.1016/j.neunet.2015.11.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We show that the omega-periodic fractional-order fuzzy neural networks cannot generate non-constant omega-periodic signals. In addition, several sufficient conditions are obtained to ascertain the boundedness and global Mittag-Leffler stability of fractional-order fuzzy neural networks. Furthermore, S-asymptotical omega-periodicity and global asymptotical omega-periodicity of fractional-order fuzzy neural networks is also characterized. The obtained criteria improve and extend the existing related results. To illustrate and compare the theoretical criteria, some numerical examples with simulation results are discussed in detail. Crown Copyright (C) 2015 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:73 / 84
页数:12
相关论文
共 50 条
  • [1] Multiple Mittag-Leffler stability and locally asymptotical ω-periodicity for fractional-order neural networks
    Wan, Liguang
    Wu, Ailong
    NEUROCOMPUTING, 2018, 315 : 272 - 282
  • [2] Mittag-Leffler stability of fractional-order Hopfield neural networks
    Zhang, Shuo
    Yu, Yongguang
    Wang, Hu
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2015, 16 : 104 - 121
  • [3] Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks
    Ren, Fengli
    Cao, Feng
    Cao, Jinde
    NEUROCOMPUTING, 2015, 160 : 185 - 190
  • [4] Multiple Mittag-Leffler Stability of Fractional-Order Recurrent Neural Networks
    Liu, Peng
    Zeng, Zhigang
    Wang, Jun
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (08): : 2279 - 2288
  • [5] Mittag-Leffler stability and asymptotic ω-periodicity of fractional-order inertial neural networks with time-delays
    Ke, Liang
    Neurocomputing, 2021, 465 : 53 - 62
  • [6] Mittag-Leffler stability and asymptotic ω-periodicity of fractional-order inertial neural networks with time-delays
    Ke, Liang
    NEUROCOMPUTING, 2021, 465 : 53 - 62
  • [7] Global Mittag-Leffler stability of Caputo fractional-order fuzzy inertial neural networks with delay
    Wang, Jingfeng
    Bai, Chuanzhi
    AIMS MATHEMATICS, 2023, 8 (10): : 22538 - 22552
  • [8] Mittag-Leffler stability and application of delayed fractional-order competitive neural networks
    Zhang, Fanghai
    Huang, Tingwen
    Wu, Ailong
    Zeng, Zhigang
    NEURAL NETWORKS, 2024, 179
  • [9] Global Mittag-Leffler Boundedness of Fractional-Order Fuzzy Quaternion-Valued Neural Networks With Linear Threshold Neurons
    Jian, Jigui
    Wu, Kai
    Wang, Baoxian
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2021, 29 (10) : 3154 - 3164
  • [10] LMI conditions to global Mittag-Leffler stability of fractional-order neural networks with impulses
    Wu, Huaiqin
    Zhang, Xinxin
    Xue, Shunhui
    Wang, Lifei
    Wang, Yu
    NEUROCOMPUTING, 2016, 193 : 148 - 154