A modulus of smoothness on the unit sphere

被引:37
作者
Ditzian, Z [1 ]
机构
[1] Univ Alberta, Dept Math Sci, Edmonton, AB T6G 2G1, Canada
来源
JOURNAL D ANALYSE MATHEMATIQUE | 1999年 / 79卷 / 1期
关键词
Banach Space; Unit Sphere; Spherical Harmonic; Triangle Inequality; Orthogonal Matrix;
D O I
10.1007/BF02788240
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For functions on Sd-1 (the unit sphere in R-d) and, in particular, for f is an element of L-p(Sd-1), we define new simple moduli of smoothness. We relate different orders of these moduli, and we also relate these moduli to best approximation by spherical harmonics of order smaller than n. Our new moduli lead to sharper results than those now available for the known moduli on L-p(Sd-1).
引用
收藏
页码:189 / 200
页数:12
相关论文
共 12 条
[1]   Best approximation and K-functionals [J].
Chen, W ;
Ditzian, Z .
ACTA MATHEMATICA HUNGARICA, 1997, 75 (03) :165-208
[2]   ON THE MARCHAUD-TYPE INEQUALITY [J].
DITZIAN, Z .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (01) :198-202
[3]  
Gantmacher F R, 1959, THEORY MATRICES, VI
[4]  
LINDENSTRAUSS Y, 1977, CLASSICAL BANACH SPE, V1
[5]  
LINDENSTRAUSS Y, 1979, CLASSICAL BANACH SPE, V2
[6]   FUNCTIONAL SPACES ON THE SPHERE, RELATED WITH APPROXIMATION-THEORY [J].
NIKOLSKII, SM ;
LIZORKIN, PI .
MATHEMATICAL NOTES, 1987, 41 (3-4) :286-291
[7]  
Petrushev P.P., 1987, ENCY MATH ITS APPL
[8]  
Stein E.M., 1971, Princeton Math. Ser., V32
[9]  
Timan A.F., 1963, Theory of Approximation of Functions of a Real Variable
[10]  
TIMAN MF, 1958, MAT SBORNIK, V44, P125