Hemodynamics in normal cerebral arteries: qualitative comparison of 4D phase-contrast magnetic resonance and image-based computational fluid dynamics

被引:56
作者
Cebral, Juan R. [1 ]
Putman, Christopher M. [2 ]
Alley, Marcus T. [3 ]
Hope, Thomas [4 ]
Bammer, Roland [3 ]
Calamante, Fernando [5 ,6 ]
机构
[1] George Mason Univ, Ctr Computat Fluid Dynam, Fairfax, VA 22030 USA
[2] Inova Fairfax Hosp, Falls Church, VA USA
[3] Stanford Univ, Dept Radiol, Lucas Ctr, Stanford, CA 94305 USA
[4] Univ Calif San Francisco, Dept Radiol, San Francisco, CA 94143 USA
[5] Brain Res Inst, Melbourne, Vic, Australia
[6] Univ Melbourne, Dept Med, Melbourne, Vic, Australia
基金
英国医学研究理事会;
关键词
Cerebral artery; Computational fluid dynamics; Hemodynamics; Magnetic resonance imaging; WALL SHEAR-STRESS; FLOW DYNAMICS; BLOOD-FLOW; ANEURYSM; CIRCLE; MODELS; MRI;
D O I
10.1007/s10665-009-9266-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Detailed knowledge of the hemodynamic conditions in normal cerebral arteries is important for a better understanding of the underlying mechanisms leading to the initiation and progression of cerebrovascular diseases. Information about the baseline values of hemodynamic variables such as wall shear stresses is necessary for comparison to pathological conditions such as in cerebral aneurysms or arterial stenoses. The purpose of this study was to compare the blood-flow patterns in cerebral arteries of normal subjects determined by 4D phase-contrast magnetic resonance and image-based computational fluid-dynamics techniques in order to assess their consistency and to highlight their differences. The goal was not to validate (or disprove) any of the two methodologies but rather to identify regions where disagreements are to be expected and to provide guidance when interpreting the data produced by each technique.
引用
收藏
页码:367 / 378
页数:12
相关论文
共 29 条
  • [1] Computation of Hemodynamics in the circle of Willis
    Alnaes, Martin Sandve
    Isaksen, Jorgen
    Mardal, Kent-Andre
    Romner, Bertil
    Morgan, Michael K.
    Ingebrigtsen, Tor
    [J]. STROKE, 2007, 38 (09) : 2500 - 2505
  • [2] PUBS: Pulsatility-based segmentation of lumens conducting non-steady flow
    Alperin, N
    Lee, SH
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2003, 49 (05) : 934 - 944
  • [3] Time-resolved 3D quantitative flow MRI of the major intracranial vessels: Initial experience and comparative evaluation at 1.5T and 3.0T in combination with parallel imaging
    Bammer, Roland
    Hope, Thomas A.
    Aksoy, Murat
    Alley, Marcus T.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2007, 57 (01) : 127 - 140
  • [4] Reproducibility of wall shear stress assessment with the paraboloid method in the internal carotid artery with velocity encoded MRI in healthy young individuals
    Box, Frieke M. A.
    van der Geest, Rob J.
    van der Grond, Jeroen
    van Osch, Matthias J. P.
    Zwinderman, Aeilko H.
    Palm-Meinders, Nge H.
    Doornbos, Joost
    Blauw, Gerard-Jan
    van Buchem, Mark A.
    Reiber, Johan H. C.
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2007, 26 (03) : 598 - 605
  • [5] Estimation of bolus dispersion effects in perfusion MRI using image-based computational fluid dynamics
    Calamante, F
    Yim, PJ
    Cebral, JR
    [J]. NEUROIMAGE, 2003, 19 (02) : 341 - 353
  • [6] Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: Technique and sensitivity
    Cebral, JR
    Castro, MA
    Appanaboyina, S
    Putman, CM
    Millan, D
    Frangi, AF
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2005, 24 (04) : 457 - 467
  • [7] Cebral JR, 2005, AM J NEURORADIOL, V26, P2550
  • [8] Blood-flow models of the circle of Willis from magnetic resonance data
    Cebral, JR
    Castro, MA
    Soto, O
    Löhner, R
    Alperin, N
    [J]. JOURNAL OF ENGINEERING MATHEMATICS, 2003, 47 (3-4) : 369 - 386
  • [9] Merging of intersecting triangulations for finite element modeling
    Cebral, JR
    Löhner, R
    Choyke, PL
    Yim, PJ
    [J]. JOURNAL OF BIOMECHANICS, 2001, 34 (06) : 815 - 819
  • [10] Cebral JR., 2007, BIOMECHANICAL SYSTEM, V1, P29