Smoothing effect for Schrodinger boundary value problems

被引:65
作者
Burq, N [1 ]
机构
[1] Univ Paris 11, Dept Math, F-91405 Orsay, France
关键词
D O I
10.1215/S0012-7094-04-12326-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show the necessity of the nontrapping condition for the plain smoothing effect (H-1/2) for the Schrodinger equation with Dirichlet boundary conditions in exterior problems. We also give a class of trapped obstacles (Ikawa's example) for which we can prove a weak (H1/2-epsilon) smoothing effect.
引用
收藏
页码:403 / 427
页数:25
相关论文
共 30 条
[1]   Regularity and decay of solutions to the stark evolution equation [J].
Ben-Artzi, M ;
Devinatz, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 154 (02) :501-512
[2]   DECAY AND REGULARITY FOR THE SCHRODINGER-EQUATION [J].
BENARTZI, M ;
KLAINERMAN, S .
JOURNAL D ANALYSE MATHEMATIQUE, 1992, 58 :25-37
[3]   Local energy decay of the wave equation for the exterior problem and absence of resonance in the neighborhood of the real axis [J].
Burq, N .
ACTA MATHEMATICA, 1998, 180 (01) :1-29
[4]  
Burq N, 2002, INT MATH RES NOTICES, V2002, P221
[5]   Microlocal defect measures, application to the Lame system [J].
Burq, N ;
Lebeau, G .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2001, 34 (06) :817-870
[6]  
Burq N, 1997, ASTERISQUE, P167
[7]   A necessary and sufficient condition for the exact controllability of the wave equation [J].
Burq, N ;
Gerard, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (07) :749-752
[8]  
BURQ N, 2002, IN PRESS ANN I H POI
[9]   LOCAL SMOOTHING PROPERTIES OF SCHRODINGER-EQUATIONS [J].
CONSTANTIN, P ;
SAUT, JC .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1989, 38 (03) :791-810
[10]  
Doi S, 1996, COMMUN PART DIFF EQ, V21, P163