Continuous-time stochastic processes with cyclical long-range dependence

被引:21
作者
Anh, VV
Knopova, VP
Leonenko, NN
机构
[1] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[2] Univ Coll Swansea, Dept Math, Swansea SA2 8PP, W Glam, Wales
[3] Kyiv Univ Natl, Dept Math, UA-03127 Kiev, Ukraine
[4] Cardiff Univ, Sch Math, Cardiff CF24 4YH, S Glam, Wales
关键词
Gegenbauer process; long-range dependence; stationary processes;
D O I
10.1111/j.1467-842X.2004.00329.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces continuous-time random processes whose spectral density is unbounded at some non-zero frequencies. The discretized versions of these processes have asymptotic properties similar to those of discrete-time Gegenbauer processes. The paper presents some properties of the covariance function and spectral density as well as a theory of statistical estimation of the mean and covariance function of such processes. Some directions for further generalizations of the results are indicated.
引用
收藏
页码:275 / 296
页数:22
相关论文
共 45 条
[1]  
ANDEL J, 1986, KYBERNETIKA, V22, P105
[2]   A MULTIVARIATE LINNIK DISTRIBUTION [J].
ANDERSON, DN .
STATISTICS & PROBABILITY LETTERS, 1992, 14 (04) :333-336
[3]  
Anderson T. W., 1971, STAT ANAL TIME SERIE
[4]   Non-Gaussian scenarios for the heat equation with singular initial conditions [J].
Anh, VV ;
Loenenko, NN .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 84 (01) :91-114
[5]   Possible long-range dependence in fractional random fields [J].
Anh, VV ;
Angulo, JM ;
Ruiz-Medina, MD .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 80 (1-2) :95-110
[6]   Dynamic models of long-memory processes driven by levy noise [J].
Anh, VV ;
Heyde, CC ;
Leonenko, NN .
JOURNAL OF APPLIED PROBABILITY, 2002, 39 (04) :730-747
[7]   Renormalization and homogenization of fractional diffusion equations with random data [J].
Anh, VV ;
Leonenko, NN .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 124 (03) :381-408
[8]  
[Anonymous], 1988, Journal of Time Series Analysis
[9]  
[Anonymous], 1944, TREATISE THEORY BESS
[10]  
Barndorff-Nielsen OE, 2000, THEOR PROBAB APPL+, V45, P175