Asymptotic behavior of solutions of linear homogeneous second-order difference equations

被引:1
作者
Kozak, AD [1 ]
Novoselov, ON [1 ]
机构
[1] Moscow State Forestry Univ, Moscow, Russia
关键词
second-order difference equations; general solution; asymptotic behavior of solutions;
D O I
10.1007/BF02674873
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze and study the asymptotic behavior (as n --> infinity) of the general solution x(n) of the equation x(n+2) = Ax(n) + Bx(n+1), A not equal 0, n = 0, 1, 2,..., for various possible values of coefficients and initial data.
引用
收藏
页码:167 / 170
页数:4
相关论文
共 13 条
[1]  
FUJISAWA T, 1984, MATH ELECTRONICS COM
[2]  
GELFOND AO, 1967, CALCULUS FINITE DIFF
[3]  
GNOENSKII LS, 1969, MATH FDN CONTROLLABL
[4]  
KENDALL M., 1976, DESIGN ANAL TIME SER
[5]   PERIOD 3 IMPLIES CHAOS [J].
LI, TY ;
YORKE, JA .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (10) :985-992
[6]  
Moon F.C, 1987, Chaotic Vibrations
[7]  
MYSHKIS AD, 1973, LECT HIGHER MATH
[8]  
SHARKOVSKII AN, 1989, DYNAMICS 1 DIMENSION
[9]   THE SUMMATION OF RANDOM CAUSES AS THE SOURCE OF CYCLIC PROCESSES [J].
Slutzky, Eugen .
ECONOMETRICA, 1937, 5 (02) :105-146
[10]  
Tsonis A.A., 1992, CHAOS THEORY APPL