The factorization method for three dimensional electrical impedance tomography

被引:13
作者
Chaulet, N. [1 ,2 ]
Arridge, S. [3 ]
Betcke, T. [1 ]
Holder, D. [2 ]
机构
[1] UCL, Dept Math, London WC1E 6BT, England
[2] UCL, Dept Med Phys & Bioengn, London WC1E 6BT, England
[3] UCL, Ctr Med Image Comp, London WC1E 6BT, England
基金
英国医学研究理事会; 英国工程与自然科学研究理事会;
关键词
inverse problems; electrical impedance tomography; factorization method; COMPLETE ELECTRODE MODEL; NUMERICAL IMPLEMENTATION; INCLUSIONS;
D O I
10.1088/0266-5611/30/4/045005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The use of the factorization method for electrical impedance tomography has been proved to be very promising for applications in the case where one wants to find inhomogeneous inclusions in a known background. In many situations, the inspected domain is three dimensional and is made of various materials. In this case, the main challenge in applying the factorization method is in computing the Neumann Green's function of the background medium. We explain how we solve this difficulty and demonstrate the capability of the factorization method to locate inclusions in realistic inhomogeneous three dimensional background media from simulated data obtained by solving the so-called complete electrode model. We also perform a numerical study of the stability of the factorization method with respect to various modelling errors.
引用
收藏
页数:15
相关论文
共 22 条
[11]   New development in freefem++ [J].
Hecht, F. .
JOURNAL OF NUMERICAL MATHEMATICS, 2012, 20 (3-4) :251-265
[12]  
Horesh L, 2006, THESIS U COLL LONDON
[14]  
Hyvönen N, 2007, INVERSE PROBL IMAG, V1, P299
[15]   Characterization of the shape of a scattering obstacle using the spectral data of the far field operator [J].
Kirsch, A .
INVERSE PROBLEMS, 1998, 14 (06) :1489-1512
[16]   The factorization method applied to the complete electrode model of impedance tomography [J].
Lechleiter, Armin ;
Hyvoenen, Nuutti ;
Hakula, Harri .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 68 (04) :1097-1121
[17]  
Mueller JL, 2012, COMPUT SCI ENG SER, V10, P3, DOI 10.1137/1.9781611972344
[18]  
Nicolas D, 2013, THESIS ECOLE DOCTORA
[19]  
Smigaj W, ACM T MATH IN PRESS
[20]   EXISTENCE AND UNIQUENESS FOR ELECTRODE MODELS FOR ELECTRIC-CURRENT COMPUTED-TOMOGRAPHY [J].
SOMERSALO, E ;
CHENEY, M ;
ISAACSON, D .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1992, 52 (04) :1023-1040