The factorization method for three dimensional electrical impedance tomography

被引:13
作者
Chaulet, N. [1 ,2 ]
Arridge, S. [3 ]
Betcke, T. [1 ]
Holder, D. [2 ]
机构
[1] UCL, Dept Math, London WC1E 6BT, England
[2] UCL, Dept Med Phys & Bioengn, London WC1E 6BT, England
[3] UCL, Ctr Med Image Comp, London WC1E 6BT, England
基金
英国医学研究理事会; 英国工程与自然科学研究理事会;
关键词
inverse problems; electrical impedance tomography; factorization method; COMPLETE ELECTRODE MODEL; NUMERICAL IMPLEMENTATION; INCLUSIONS;
D O I
10.1088/0266-5611/30/4/045005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The use of the factorization method for electrical impedance tomography has been proved to be very promising for applications in the case where one wants to find inhomogeneous inclusions in a known background. In many situations, the inspected domain is three dimensional and is made of various materials. In this case, the main challenge in applying the factorization method is in computing the Neumann Green's function of the background medium. We explain how we solve this difficulty and demonstrate the capability of the factorization method to locate inclusions in realistic inhomogeneous three dimensional background media from simulated data obtained by solving the so-called complete electrode model. We also perform a numerical study of the stability of the factorization method with respect to various modelling errors.
引用
收藏
页数:15
相关论文
共 22 条
[1]   Computational aspects of finite element modeling in EEG source localization [J].
Awada, KA ;
Jackson, DR ;
Williams, JT ;
Wilton, DR ;
Baumann, SB ;
Papanicolaou, AC .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1997, 44 (08) :736-752
[2]  
Borsic A., 2004, Electrical Impedance Tomography: Methods, History andApplications, P3
[3]   Numerical implementation of two noniterative methods for locating inclusions by impedance tomography [J].
Brühl, M ;
Hanke, M .
INVERSE PROBLEMS, 2000, 16 (04) :1029-1042
[4]  
Brühl M, 2001, SIAM J MATH ANAL, V32, P1327
[5]  
Calderón AP, 2006, COMPUT APPL MATH, V25, P133
[6]   ELECTRODE MODELS FOR ELECTRIC-CURRENT COMPUTED-TOMOGRAPHY [J].
CHENG, KS ;
ISAACSON, D ;
NEWELL, JC ;
GISSER, DG .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1989, 36 (09) :918-924
[7]  
Choi M K, 2013, INVERSE PRO IN PRESS
[8]   Numerical analysis of the factorization method for EIT with a piecewise constant uncertain background [J].
Haddar, Houssem ;
Migliorati, Giovanni .
INVERSE PROBLEMS, 2013, 29 (06)
[9]   Recent progress in electrical impedance tomography [J].
Hanke, M ;
Brühl, M .
INVERSE PROBLEMS, 2003, 19 (06) :S65-S90
[10]   The factorization method for electrical impedance tomography in the half-spaces [J].
Hanke, Martin ;
Schappel, Birgit .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 68 (04) :907-924