Syngas production by high temperature steam/CO2 coelectrolysis using solid oxide electrolysis cells

被引:31
|
作者
Chen, Xinbing [1 ]
Guan, Chengzhi [1 ]
Xiao, Guoping [1 ]
Du, Xianlong [1 ]
Wang, Jian-Qiang [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China
关键词
CO-ELECTROLYSIS; H2O; FUELS; MODEL;
D O I
10.1039/c5fd00017c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High temperature (HT) steam/CO2 coelectrolysis with solid oxide electrolysis cells (SOECs) using the electricity and heat generated from clean energies is an important alternative for syngas production without fossil fuel consumption and greenhouse gas emissions. Herein, reaction characteristics and the outlet syngas composition of HT steam/CO2 coelectrolysis under different operating conditions, including distinct inlet gas compositions and electrolysis current densities, are systematically studied at 800 degrees C using commercially available SOECs. The HT coelectrolysis process, which has comparable performance to HT steam electrolysis, is more active than the HT CO2 electrolysis process, indicating the important contribution of the reverse water-gas shift reaction in the formation of CO. The outlet syngas composition from HT steam/CO2 coelectrolysis is very sensitive to the operating conditions, indicating the feasibility of controlling the syngas composition by varying these conditions. Maximum steam and CO2 utilizations of 77% and 76% are achieved at 1.0 A cm(-2) with an inlet gas composition of 20% H-2/40% steam/40% CO2.
引用
收藏
页码:341 / 351
页数:11
相关论文
共 50 条
  • [31] Valorization of carbon dioxide by co-electrolysis of CO2/H2O at high temperature for syngas production
    Redissi, Youssef
    Bouallou, Chakib
    GHGT-11, 2013, 37 : 6667 - 6678
  • [32] Methane assisted solid oxide co-electrolysis process for syngas production
    Wang, Yao
    Liu, Tong
    Lei, Libin
    Chen, Fanglin
    JOURNAL OF POWER SOURCES, 2017, 344 : 119 - 127
  • [33] High-performance composite cathode for electrolysis of CO2 in tubular solid oxide electrolysis cells: A pathway for efficient CO2 utilization
    Kaur, Gurpreet
    Kulkarni, Aniruddha P.
    Fini, Daniel
    Giddey, Sarbjit
    Seeber, Aaron
    JOURNAL OF CO2 UTILIZATION, 2020, 41
  • [34] Performance characteristics of flat-tubular solid oxide co-electrolysis cells for syngas production by electrochemical conversion of H2O/CO2
    Lim, Tak-Hyoung
    Kim, Hye-Sung
    Hong, Jong-Eun
    Lee, Seung-bok
    Park, Seok-Ju
    Song, Rak-Hyun
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [35] Modeling of Micro-Tubular Solid Oxide H2O/CO2 co-Electrolysis Cell for Syngas Production
    Song, Luyi
    Du, Jiazhi
    Wang, Yao
    Zhao, Wen
    Liu, Tong
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (04): : 2949 - 2962
  • [36] Syngas (CO-H2) production using high temperature micro-tubular solid oxide electrolysers
    Kleiminger, L.
    Li, T.
    Li, K.
    Kelsall, G. H.
    ELECTROCHIMICA ACTA, 2015, 179 : 565 - 577
  • [37] Hydrogen and synthetic fuel production using high temperature solid oxide electrolysis cells (SOECs)
    Kazempoor, P.
    Braun, R. J.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (09) : 3599 - 3612
  • [38] Performance optimization of solid oxide electrolysis cell for syngas production by high temperature co-electrolysis via differential evolution algorithm with practical constraints
    Fei, Yuxuan
    Li, Ang
    Zhang, Chen
    Tu, Hengyong
    Zhu, Lei
    Huang, Zhen
    ENERGY CONVERSION AND MANAGEMENT, 2024, 300
  • [39] Modeling CO2 electrolysis in solid oxide electrolysis cell
    Narasimhaiah, Geetha
    Janardhanan, Vinod M.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2013, 17 (08) : 2361 - 2370
  • [40] Modeling CO2 electrolysis in solid oxide electrolysis cell
    Geetha Narasimhaiah
    Vinod M. Janardhanan
    Journal of Solid State Electrochemistry, 2013, 17 : 2361 - 2370