Exoelectrogens Leading to Precise Reduction of Graphene Oxide by Flexibly Switching Their Environment during Respiration

被引:14
作者
Bansal, Prema [1 ]
Doshi, Sejal [1 ]
Panwar, Ajay S. [1 ]
Bahadur, Dhirendra [1 ]
机构
[1] ITT Bombay, Dept Met Engn & Mat Sci, Bombay 400076, Maharashtra, India
关键词
graphene; biosynthesis; bacterial reduction; reduced graphene oxide; Shigella dysenteriae; mass production; green methodology; ESCHERICHIA-COLI; PERFORMANCE; NANOSHEETS; GRAPHITE; BACTERIA; FACILE; FILMS;
D O I
10.1021/acsami.5b04390
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Reduced graphene oxide (RGO) has been prepared by a simple, cost-effective, and green route. In this work, graphene oxide (GO) has been reduced using Gram-negative facultative anaerobe S. dysenteriae, having exogenic properties of electron transfer via electron shuttling. Apparently, different concentrations of GO were successfully reduced with almost complete mass recovery. An effective role of lipopolysaccharide has been observed while comparing RGO reduced by S. dysenteriae and S. aureus. It was observed that the absence of lipopolysaccharide in Gram-positive S. aureus leads to a disrupted cell wall and that S.aureus could not survive in the presence of GO, leading to poor and inefficient reduction of GO, as shown in our results. However, S. dysenteriae having an outer lipopolysaccharide layer on its cell membrane reduced GO efficiently and the reduction process was extracellular for it. RGO prepared in our work has been characterized by X-ray diffraction, zeta potential, X-ray photoelectron spectroscopy, and Raman spectroscopy techniques, and the results were found to be in good agreement with those of chemically reduced GO. As agglomeration of RGO is the major issue to overcome while chemically reducing GO, we observed that RGO prepared by a bacterial route in our work has zeta potential value of -26.62 mV, good enough to avoid restacking of RGO. The role of exoelectrogens in electron transfer in the extracellular space has been depicted. Toxin released extracellularly during the process paves the way for reduction of GO due to its affinity towards oxygen.
引用
收藏
页码:20576 / 20584
页数:9
相关论文
共 49 条
[1]   Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets [J].
Akhavan, O. .
CARBON, 2015, 81 :158-166
[2]   Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner [J].
Akhavan, O. ;
Ghaderi, E. .
CARBON, 2012, 50 (05) :1853-1860
[3]   Wrapping Bacteria by Graphene Nanosheets for Isolation from Environment, Reactivation by Sonication, and Inactivation by Near-Infrared Irradiation [J].
Akhavan, O. ;
Ghaderi, E. ;
Esfandiar, A. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (19) :6279-6288
[4]   Photodegradation of Graphene Oxide Sheets by TiO2 Nanoparticles after a Photocatalytic Reduction [J].
Akhavan, O. ;
Abdolahad, M. ;
Esfandiar, A. ;
Mohatashamifar, M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (30) :12955-12959
[5]   Synthesis of graphene from natural and industrial carbonaceous wastes [J].
Akhavan, Omid ;
Bijanzad, Keyvan ;
Mirsepah, Ali .
RSC ADVANCES, 2014, 4 (39) :20441-20448
[6]   The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy [J].
Akhavan, Omid ;
Ghaderi, Elham ;
Aghayee, Samira ;
Fereydooni, Yasamin ;
Talebi, Ali .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (27) :13773-13781
[7]   Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria [J].
Akhavan, Omid ;
Ghaderi, Elham .
ACS NANO, 2010, 4 (10) :5731-5736
[8]  
[Anonymous], 2012, ISRN CONDENS MATTER, DOI [DOI 10.5402/2012/501686, 10.5402/2012/501686]
[9]  
Asakura H, 2001, EPIDEMIOL INFECT, V127, P27, DOI 10.1017/S0950268801005635
[10]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]