Impregnated membranes for direct methanol fuel cells at high methanol concentrations

被引:22
|
作者
Yildirim, M. Hakan [1 ]
Schwarz, Alexander [2 ]
Stamatialis, Dimitrios F. [1 ]
Wessling, Matthias [1 ]
机构
[1] Univ Twente, IMPACT, Fac Sci & Technol, NL-7500 AE Enschede, Netherlands
[2] Univ Appl Sci Muenster, Dept Chem Engn, D-48565 Steinfurt, Germany
关键词
Sulfonated poly(phthalazinone ether ketone); Poly(ethylene); Methanol cross-over; Composite membrane; Direct methanol fuel cell; POLY(PHTHALAZINONE ETHER KETONE); PROTON-EXCHANGE MEMBRANES; POLYPERFLUOROSULFONIC ACID MEMBRANES; COMPOSITE MEMBRANES; ELECTROLYTE; PERFORMANCE; DMFC;
D O I
10.1016/j.memsci.2008.11.051
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Sulfonated poly(phthalazinone ether ketone) (SPPEK) impregnated Solupor (R) microporous film (SPPEK-PE)and pure SPPEK membranes with two different ion-exchange capacities (IECs) were prepared and characterized for use in DMFC applications. Swelling, proton conductivity, diffusion and DMFC experiments were performed at various methanol concentrations to understand the effect of impregnation of an ion-conductive polymer membrane to the fuel cell performance. Impregnating SPPEK into PE decreases swelling degree and methanol permeability of the membranes, but at the same time the proton conductivity. Unlike perfluorinated membranes, SPPEK-PE shows an increase in its DMFC performance at high methanol concentration and that makes it more attractive for mobile DMFC applications where high methanol concentrations are needed to compete with Li-ion batteries. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:127 / 133
页数:7
相关论文
共 50 条
  • [21] Utilization of mesoporous phosphotungstic acid in nanocellulose membranes for direct methanol fuel cells
    Priyangga, Arif
    Atmaja, Lukman
    Santoso, Mardi
    Jaafar, Juhana
    Ilbeygi, Hamid
    RSC ADVANCES, 2022, 12 (23) : 14411 - 14421
  • [22] Diphenylsilicate-incorporated Nafion® membranes for reduction of methanol crossover in direct methanol fuel cells
    Liang, Z. X.
    Zhao, T. S.
    Prabhuram, J.
    JOURNAL OF MEMBRANE SCIENCE, 2006, 283 (1-2) : 219 - 224
  • [23] Direct methanol fuel cells
    Dubois, JC
    ACTUALITE CHIMIQUE, 2001, (12): : 58 - 62
  • [24] A review on methanol crossover in direct methanol fuel cells: challenges and achievements
    Ahmed, Mahmoud
    Dincer, Ibrahim
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (14) : 1213 - 1228
  • [25] Direct measurement of methanol crossover fluxes underland and channel in direct methanol fuel cells
    Almheiri, Saif
    Liu, Hongtan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (34) : 10969 - 10978
  • [26] An overview of fuel management in direct methanol fuel cells
    Kamaruddin, M. Z. F.
    Kamarudin, S. K.
    Daud, W. R. W.
    Masdar, M. S.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 24 : 557 - 565
  • [27] Radiation-grafted membranes based on polyethylene for direct methanol fuel cells
    Sherazi, Tauqir A.
    Guiver, Michael D.
    Kingston, David
    Ahmad, Shujaat
    Kashmiri, M. Akram
    Xue, Xinzhong
    JOURNAL OF POWER SOURCES, 2010, 195 (01) : 21 - 29
  • [28] Towards operating direct methanol fuel cells with highly concentrated fuel
    Zhao, T. S.
    Yang, W. W.
    Chen, R.
    Wu, Q. X.
    JOURNAL OF POWER SOURCES, 2010, 195 (11) : 3451 - 3462
  • [29] Evaluation of composite membranes for direct methanol fuel cells
    Li, X
    Roberts, EPL
    Holmes, SM
    JOURNAL OF POWER SOURCES, 2006, 154 (01) : 115 - 123
  • [30] Optimum ionic conductivity and diffusion coefficient of ion-exchange membranes at high methanol feed concentrations in a direct methanol fuel cell
    Lee, K.
    Nam, J. -D.
    JOURNAL OF POWER SOURCES, 2006, 157 (01) : 201 - 206