Heterologous expression of the gourd E3 ubiquitin ligase gene LsRZF1 compromises the drought stress tolerance in Arabidopsis thaliana

被引:11
|
作者
Min, Ji-Hee [1 ]
Ju, Hyun-Woo [1 ]
Yang, Kwang-Yeol [1 ]
Chung, Jung-Sung [2 ]
Cho, Baik-Ho [1 ]
Kim, Cheol Soo [1 ]
机构
[1] Chonnam Natl Univ, Dept Plant Biotechnol, Kwangju 500757, South Korea
[2] Gyeongsang Natl Univ, Dept Agron, Jinju 660701, South Korea
关键词
Abscisic acid; Dehydration; E3 ubiquitin ligase; Gourd family; LsRZF1; RING-H2 zinc finger protein; ABSCISIC-ACID; PROLINE ACCUMULATION; POSITIVE REGULATOR; SALT; BIOSYNTHESIS; MUTATION; GROWTH;
D O I
10.1016/j.plaphy.2014.01.010
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Protein ubiquitination is one of the major regulatory processes used by eukaryotic cells. The ubiquitin E3 ligase acts as a main determinant of substrate specificity. However, the precise roles of E3 ligase in plants to drought stress are poorly understood. In this study, a gourd family (Lagenaria siceraria) ortholog of Arabidopsis thaliana RING Zinc Finger 1 (AtRZF1) gene, designated LsRZF1, was identified and characterized. IsRZF1 was reduced by abscisic acid (ABA), osmotic stress, and drought conditions. Compared to wild type, transgenic Arabidopsis plants ectopic expressing LsRZF1 were hypersensitive to ABA and osmotic stress during early seedling development, indicating that LsRZF1 negatively regulates drought-mediated control of early seedling development. Moreover, the ectopic expression of the LsRZF1 gene was very influential in drought sensitive parameters including proline content, water loss, and the expression of dehydration stress-related genes. Furthermore, ubiquitin E3 ligase activity and genetic data indicate that AtRZF1 and LsRZF1 function in similar pathway to control proline metabolism in Arabidopsis under drought condition. Together, these results suggest that the E3 ligase L5RZF1 is an important regulator of water deficit stress during early seedling development. Crown Copyright (C) 2014 Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:7 / 14
页数:8
相关论文
共 50 条
  • [1] Overexpression of the maize E3 ubiquitin ligase gene ZmAIRP4 enhances drought stress tolerance in Arabidopsis
    Yang, Liang
    Wu, Lintao
    Chang, Wei
    Li, Zhi
    Miao, Mingjun
    Li, Yuejian
    Yang, Junpin
    Liu, Zhibin
    Tan, Jun
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 123 : 34 - 42
  • [2] The Arabidopsis thaliana E3 Ubiquitin Ligase BRIZ Functions in Abscisic Acid Response
    Linden, Katrina J.
    Hsia, Mon Mandy
    Chen, Yi-Tze
    Callis, Judy
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [3] GpDSR7, a Novel E3 Ubiquitin Ligase Gene in Grimmia pilifera Is Involved in Tolerance to Drought Stress in Arabidopsis
    Li, Mengmeng
    Li, Yihao
    Zhao, Junyi
    Liu, Hai
    Jia, Shenghua
    Li, Jie
    Zhao, Heping
    Han, Shengcheng
    Wang, Yingdian
    PLOS ONE, 2016, 11 (05):
  • [4] Suppression of Arabidopsis RING E3 ubiquitin ligase AtATL78 increases tolerance to cold stress and decreases tolerance to drought stress
    Kim, Soo Jin
    Kim, Woo Taek
    FEBS LETTERS, 2013, 587 (16) : 2584 - 2590
  • [5] The E3 Ligase AtRDUF1 Positively Regulates Salt Stress Responses in Arabidopsis thaliana
    Li, Junhua
    Han, Yingying
    Zhao, Qingzhen
    Li, Chunhua
    Xie, Qi
    Chong, Kang
    Xu, Yunyuan
    PLOS ONE, 2013, 8 (08):
  • [6] Heterologous Expression of the Wheat Aquaporin Gene TaTIP2;2 Compromises the Abiotic Stress Tolerance of Arabidopsis thaliana
    Xu, Chunhui
    Wang, Meng
    Zhou, Li
    Quan, Taiyong
    Xia, Guangmin
    PLOS ONE, 2013, 8 (11):
  • [7] Heterologous expression of bacterial dehydrin gene in Arabidopsis thaliana promotes abiotic stress tolerance
    Khan, Nadir Zaman
    Ali, Akhtar
    Ali, Waqar
    Aasim, Muhammad
    Khan, Tariq
    Khan, Zaryab
    Munir, Iqbal
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2023, 29 (09) : 1239 - 1246
  • [8] Wheat E3 ligase TaPRP19 is involved in drought stress tolerance in transgenic Arabidopsis
    Hong, Min Jeong
    Ko, Chan Seop
    Kim, Dae Yeon
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2025, 31 (02) : 233 - 246
  • [9] RING E3 ubiquitin ligase TaSADR1 negatively regulates drought resistance in transgenic Arabidopsis
    Sun, Huimin
    Li, Jiatao
    Li, Xu
    Lv, Qian
    Chen, Liuping
    Wang, Bingxin
    Li, Liqun
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2022, 170 : 255 - 265
  • [10] Arabidopsis RING E3 ubiquitin ligase JUL1 participates in ABA-mediated microtubule depolymerization, stomatal closure, and tolerance response to drought stress
    Yu, Seong Gwan
    Kim, Jong Hum
    Cho, Na Hyun
    Oh, Tae Rin
    Kim, Woo Taek
    PLANT JOURNAL, 2020, 103 (02) : 824 - 842