Levels of function fields of surfaces over number fields

被引:1
|
作者
Jannsen, U [1 ]
Sujatha, R
机构
[1] Univ Regensburg, Fak Math, D-09304 Regensburg, Germany
[2] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
关键词
D O I
10.1006/jabr.2001.9131
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the level of nonformally real function fields of surfaces over number fields and show that it is at most 4 for a large class of surfaces. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:350 / 357
页数:8
相关论文
共 50 条
  • [21] Effective bounds for Brauer groups of Kummer surfaces over number fields
    Cantoral-Farfan, Victoria
    Tang, Yunqing
    Tanimoto, Sho
    Visse, Erik
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 97 : 353 - 376
  • [22] ZERO-CYCLES ON RATIONAL SURFACES OVER NUMBER-FIELDS
    SALBERGER, P
    INVENTIONES MATHEMATICAE, 1988, 91 (03) : 505 - 524
  • [23] On Factorization of Multivariate Polynomials over Algebraic Number and Function Fields
    Javadi, Seyed Mohammad Mahdi
    Monagan, Michael
    ISSAC2009: PROCEEDINGS OF THE 2009 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2009, : 199 - 206
  • [24] CLASS NUMBER FORMULAS OVER GLOBAL FUNCTION-FIELDS
    SHU, LS
    JOURNAL OF NUMBER THEORY, 1994, 48 (02) : 133 - 161
  • [25] Singularities and vanishing cycles in number theory over function fields
    Sawin, Will
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2020, 7 (03)
  • [26] K3 surfaces over number fields with geometric Picard number one
    Ellenberg, JS
    ARITHMETIC OF HIGHER-DIMENSIONAL ALGEBRAIC VARIETIES, 2004, 226 : 135 - 140
  • [27] Bounds for the number of rational points on curves over function fields
    Pacheco, Amilcar
    Pazuki, Fabien
    NEW YORK JOURNAL OF MATHEMATICS, 2013, 19 : 131 - 144
  • [28] PRIME NUMBER RACES FOR ELLIPTIC CURVES OVER FUNCTION FIELDS
    Cha, Byungchul
    Fiorilli, Daniel
    Jouve, Florent
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2016, 49 (05): : 1239 - 1277
  • [29] On the number of ramified primes in specializations of function fields over Q
    Bary-Soroker, Lior
    Legrand, Francois
    NEW YORK JOURNAL OF MATHEMATICS, 2018, 24 : 1004 - 1019
  • [30] Unboundedness of the number of rational points on curves over function fields
    Conceicao, Ricardo
    Ulmer, Douglas
    Voloch, Jose Felipe
    NEW YORK JOURNAL OF MATHEMATICS, 2012, 18 : 291 - 293