Measurement Bias on Nanoparticle Size Characterization by Asymmetric Flow Field-Flow Fractionation Using Dynamic Light-Scattering Detection

被引:14
作者
Gigault, Julien [1 ]
Mignard, Emmanuel [2 ]
El Hadri, Hind [3 ]
Grassl, Bruno [4 ]
机构
[1] Univ Rennes 1, Lab Geosci Rennes, CNRS, Campus Beaulieu, F-35000 Rennes, France
[2] CNRS, LOF, UMR 5258, F-33600 Pessac, France
[3] NIST, Mat Measurement Lab, 100 Bur Dr, Gaithersburg, MD 20878 USA
[4] Univ Pau & Pays Adour, CNRS, UMR 5254, Helioparc,2 Ave President Angot, F-64053 Pau, France
关键词
Asymmetric flow field-flow fractionation; Light scattering; Nanoparticles; Fullerenes; Size characterization; FULLERENES; PARTICLES; WATER; C-60; DISPERSIONS; SUSPENSIONS; MICROSCOPY; RETENTION; DIFFUSION; MASS;
D O I
10.1007/s10337-017-3250-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In this work, we highlight the influence of the particle-particle interaction on the retention behavior in asymmetric flow field-flow fractionation (A4F) and the misunderstanding considering the size determination by a light-scattering detector (static and dynamic light scattering) by comparing fullerene nanoparticles to similar sized polystyrene nanoparticle standards. The phenomena described here suggest that there are biases in the hydrodynamic size and diffusion determination induced by particle-particle interactions, as characterized by their virial coefficient. The dual objectives of this paper are to (1) demonstrate the uncertainties resulting from the current practice of size determination by detectors coupled to an A4F system and (2) initiate a discussion of the effects of particle-particle interactions using fullerene nanoparticles on their characterization as well as their origins. The results presented here clearly illustrate that the simple diffusion coefficient equation that is generally used to calculate the hydrodynamic size of nanoparticles (NPs) cannot be considered for whole fractograms according to their size distribution. We tried to identify particle interactions that appear during fractionation and demonstrated using the fully developed diffusion coefficient equation. We postulate that the observed interaction-dependent retention behavior may be attributed to differences in the virial coefficient between NPs and between NPs and the accumulation wall (membrane surface) without quantifying it. We hope that our results will stimulate discussion and a reassessment of the size determination procedure by A4F-LS to more fully account for all the influential material parameters that are relevant to the fractionation of nanoscale particles by A4F.
引用
收藏
页码:287 / 294
页数:8
相关论文
共 39 条
[1]   Stable colloidal dispersions of fullerenes in polar organic solvents [J].
Alargova, RG ;
Deguchi, S ;
Tsujii, K .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (43) :10460-10467
[2]   Accuracy in multiangle light scattering measurements for molar mass and radius estimations. Model calculations and experiments [J].
Andersson, M ;
Wittgren, B ;
Wahlund, KG .
ANALYTICAL CHEMISTRY, 2003, 75 (16) :4279-4291
[3]  
[Anonymous], 2008, NANOTECHNOLOGIES TER
[4]   Dissociation-Based Screening of Nanoparticle-Protein Interaction via Flow Field-Flow Fractionation [J].
Ashby, Jonathan ;
Schachermeyer, Samantha ;
Pan, Songqin ;
Zhong, Wenwan .
ANALYTICAL CHEMISTRY, 2013, 85 (15) :7494-7501
[5]   Rationalizing Nanomaterial Sizes Measured by Atomic Force Microscopy, Flow Field-Flow Fractionation, and Dynamic Light Scattering: Sample Preparation, Polydispersity, and Particle Structure [J].
Baalousha, M. ;
Lead, J. R. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (11) :6134-6142
[6]   Diffusion of Interacting Particles in Discrete Geometries [J].
Becker, T. ;
Nelissen, K. ;
Cleuren, B. ;
Partoens, B. ;
Van den Broeck, C. .
PHYSICAL REVIEW LETTERS, 2013, 111 (11)
[7]   Entropic contribution to the retention of nonspherical particles in field-flow fractionation [J].
Beckett, R ;
Giddings, JC .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1997, 186 (01) :53-59
[8]   Comparison of on-line detectors for field flow fractionation analysis of nanomaterials [J].
Bednar, A. J. ;
Poda, A. R. ;
Mitrano, D. M. ;
Kennedy, A. J. ;
Gray, E. P. ;
Ranville, J. F. ;
Hayes, C. A. ;
Crocker, F. H. ;
Steevens, J. A. .
TALANTA, 2013, 104 :140-148
[9]   Size characterization and quantification of silver nanoparticles by asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry [J].
Bolea, E. ;
Jimenez-Lamana, J. ;
Laborda, F. ;
Castillo, J. R. .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2011, 401 (09) :2723-2732
[10]  
Burchard W., 1983, LIGHT SCATTERING POL, P1