A fully discrete approximation of the one-dimensional stochastic wave equation

被引:33
作者
Cohen, David [1 ]
Quer-Sardanyons, Lluis [2 ]
机构
[1] Umea Univ, Matemat & Matemat Stat, S-90187 Umea, Sweden
[2] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Spain
基金
瑞典研究理事会;
关键词
nonlinear stochastic wave equation; multiplicative noise; strong convergence; finite differences; stochastic trigonometric methods; PARTIAL-DIFFERENTIAL-EQUATIONS; FINITE-ELEMENT METHODS; NUMERICAL APPROXIMATION; LATTICE APPROXIMATIONS; TIME; DISCRETIZATION; DRIVEN; SCHEME;
D O I
10.1093/imanum/drv006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A fully discrete approximation of one-dimensional nonlinear stochastic wave equations driven by multiplicative noise is presented. A standard finite difference approximation is used in space and a stochastic trigonometric method is used for the temporal approximation. This explicit time integrator allows for error bounds in LP(Omega), uniformly in time and space, in such a way that the time discretization does not suffer from any kind of CFL-type step-size restriction. Moreover, uniform almost sure convergence of the numerical solution is also proved. Numerical experiments are presented and confirm the theoretical results.
引用
收藏
页码:400 / 420
页数:21
相关论文
共 32 条
[1]   RANDOM NON-LINEAR WAVE-EQUATIONS - SMOOTHNESS OF THE SOLUTIONS [J].
CARMONA, R ;
NUALART, D .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (04) :469-508
[2]   Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations [J].
Cohen, David ;
Hairer, Ernst ;
Lubich, Christian .
NUMERISCHE MATHEMATIK, 2008, 110 (02) :113-143
[3]   A TRIGONOMETRIC METHOD FOR THE LINEAR STOCHASTIC WAVE EQUATION [J].
Cohen, David ;
Larsson, Stig ;
Sigg, Magdalena .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) :204-222
[4]   On the numerical discretisation of stochastic oscillators [J].
Cohen, David .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (08) :1478-1495
[5]   Convergence analysis of trigonometric methods for stiff second-order stochastic differential equations [J].
Cohen, David ;
Sigg, Magdalena .
NUMERISCHE MATHEMATIK, 2012, 121 (01) :1-29
[6]   The non-linear stochastic wave equation in high dimensions [J].
Conus, Daniel ;
Dalang, Robert C. .
ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 :629-670
[7]   Intermittency properties in a hyperbolic Anderson problem [J].
Dalang, Robert C. ;
Mueller, Carl .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (04) :1150-1164
[8]  
Gauckler L., 2014, SIAM J NUME IN PRESS
[9]   On the use of the Gautschi-type exponential integrator for wave equations [J].
Grimm, Volker .
NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2006, :557-563
[10]   Resolvent Krylov subspace approximation to operator functions [J].
Grimm, Volker .
BIT NUMERICAL MATHEMATICS, 2012, 52 (03) :639-659