Dade's inductive conjecture for the ree groups of type G2 in the defining characteristic

被引:8
作者
Eaton, CW [1 ]
机构
[1] Univ Leicester, Dept Math & Comp Sci, Leicester LE1 7RH, Leics, England
基金
英国工程与自然科学研究理事会;
关键词
Alperin's conjecture; Dade's conjecture; character theory; finite groups of Lie type; modular representation theory;
D O I
10.1006/jabr.1999.8214
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We verify the inductive form of Dade's conjecture for the finite simple groups (2)G(2)(3(2m+1)), where m is a positive integer, for the prime p = 3. Together with work by J. An (1994, Indian J. Math. 36, 7-27) this completes the verification of the conjecture for this series of groups. (C) 2000 Academic Press.
引用
收藏
页码:614 / 620
页数:7
相关论文
共 15 条
[1]  
Alperin J.L., 1986, P S PURE MATH, V47, P369
[2]  
AN J, 1994, INDIAN J MATH, V36, P7
[3]   MODULAR REPRESENTATION-THEORY OF FINITE-GROUPS WITH SYLOW,T.I. P-SUBGROUPS [J].
BLAU, HI ;
MICHLER, GO .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 319 (02) :417-468
[4]   BRAUER MORPHISM BETWEEN MODULAR HECKE ALGEBRAS [J].
CABANES, M .
JOURNAL OF ALGEBRA, 1988, 115 (01) :1-31
[5]  
Carter R. W., 1972, SIMPLE GROUPS TYPE
[6]   COUNTING CHARACTERS IN BLOCKS, I [J].
DADE, EC .
INVENTIONES MATHEMATICAE, 1992, 109 (01) :187-210
[7]  
Dade EC, 1997, OHIO ST U M, V6, P45
[8]  
DADE EC, 1994, J REINE ANGEW MATH, V448, P97
[9]  
Isaacs I.M., 1976, CHARACTER THEORY FIN
[10]  
KNORR R, 1989, J LOND MATH SOC, V39, P48