Production of reactive oxygen species in Arabidopsis thaliana cell suspension cultures in response to an elicitor from Fusarium oxysporum:: implications for basal resistance

被引:78
作者
Davies, Dewi R. [1 ]
Bindschedler, Laurence V. [1 ]
Strickland, Tony S. [1 ]
Bolwell, G. Paul [1 ]
机构
[1] Univ London Royal Holloway & Bedford New Coll, Sch Biol Sci, Egham TW20 0EX, Surrey, England
关键词
Arabidopsis thaliana; calcium; elicitation; hydrogen peroxide; oxidative burst; secretion;
D O I
10.1093/jxb/erj216
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The present understanding of ROS generation in the defence response of Arabidopsis thaliana is reviewed. Evidence suggests that the apoplastic oxidative burst generated during basal resistance is peroxidase-dependent. The ROS generated during this basal resistance may serve to activate NADPH oxidase during the R-gene-mediated hypersensitive response. The processes involved in the production of reactive oxygen species in A. thaliana cell suspension cultures in response to an elicitor from Fusarium oxysporum are investigated in the present work. This system appears analogous to the production of ROS during the basal resistance response in French bean, which is peroxidase-dependent. A panel of modulators effective in other pathogen elicitor and plant cell systems has been used to investigate the Arabidopsis signalling pathways and the plant cell responses involved. Thus as in other systems, an early calcium influx into the cytosolic compartment, a rapid efflux of K+ and Cl-, and extracellular alkalinization of elicited cell cultures has been found. However the alkalinization is not sufficient to stimulate the apoplastic oxidative burst by itself, unlike in French bean, although vectorial ion fluxes are needed. A secretory component which is sensitive to monensin and N-ethylmaleimide and insensitive to brefeldin A may also be necessary for the release and provision of substrates for peroxidase-dependent generation of H2O2.
引用
收藏
页码:1817 / 1827
页数:11
相关论文
共 65 条
[1]   Activation of a plant plasma membrane Ca2+ channel by TGα1, a heterotrimeric G protein α-subunit homologue [J].
Aharon, GS ;
Gelli, A ;
Snedden, WA ;
Blumwald, E .
FEBS LETTERS, 1998, 424 (1-2) :17-21
[2]   Regulation of CDPKs, including identification of PAL kinase, in biotically stressed cells of French bean [J].
Allwood, EG ;
Davies, DR ;
Gerrish, C ;
Bolwell, GP .
PLANT MOLECULAR BIOLOGY, 2002, 49 (05) :533-544
[3]   Reactive oxygen species: Metabolism, oxidative stress, and signal transduction [J].
Apel, K ;
Hirt, H .
ANNUAL REVIEW OF PLANT BIOLOGY, 2004, 55 :373-399
[4]   A high-affinity calmodulin-binding site in a tobacco plasma-membrane channel protein coincides with a characteristic element of cyclic nucleotide-binding domains [J].
Arazi, T ;
Kaplan, B ;
Fromm, H .
PLANT MOLECULAR BIOLOGY, 2000, 42 (04) :591-601
[5]   Localized changes in peroxidase activity accompany hydrogen peroxide generation during the development of a nonhost hypersensitive reaction in lettuce [J].
Bestwick, CS ;
Brown, IR ;
Mansfield, JW .
PLANT PHYSIOLOGY, 1998, 118 (03) :1067-1078
[6]   Early signalling events in the apoplastic oxidative burst in suspension cultured French bean cells involve cAMP and Ca2+ [J].
Bindschedler, LV ;
Minibayeva, F ;
Gardner, SL ;
Gerrish, C ;
Davies, DR ;
Bolwell, GP .
NEW PHYTOLOGIST, 2001, 151 (01) :185-194
[7]   Molecular identification and expression of the peroxidase responsible for the oxidative burst in French bean (Phaseolus vulgaris L.) and related members of the gene family [J].
Blee, KA ;
Jupe, SC ;
Richard, G ;
Zimmerlin, A ;
Davies, DR ;
Bolwell, GP .
PLANT MOLECULAR BIOLOGY, 2001, 47 (05) :607-620
[8]   Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley [J].
Blume, B ;
Nürnberger, T ;
Nass, N ;
Scheel, D .
PLANT CELL, 2000, 12 (08) :1425-1440
[9]  
BOLWELL GP, 1992, PHYTOCHEMISTRY, V31, P4081, DOI 10.1016/0031-9422(92)80418-E
[10]   CYCLIC-AMP, THE RELUCTANT MESSENGER IN PLANTS [J].
BOLWELL, GP .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (12) :492-495