Dissipative Berry phase effect in quantum tunneling

被引:1
作者
Zhang, Xiao-Xiao [1 ,2 ,3 ]
Nagaosa, Naoto [3 ,4 ]
机构
[1] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada
[2] Univ British Columbia, Stewart Blusson Quantum Matter Inst, Vancouver, BC V6T 1Z4, Canada
[3] RIKEN Ctr Emergent Matter Sci CEMS, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[4] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
基金
加拿大自然科学与工程研究理事会;
关键词
MAGNETIC MONOPOLES; FALSE VACUUM; SPIN; INTERFERENCE; GENERATION; DYNAMICS; FORMULAS; SYSTEMS; DECAY; FATE;
D O I
10.1103/PhysRevB.102.245426
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Berry phase effect plays a central role in many mesoscale condensed matter and quantum chemical systems that are naturally under the environmental influence of dissipation. We propose and microscopically derive a prototypical quantum coherent tunneling model around a monopole or conical potential intersection in order to address the intriguing but overlooked interplay between dissipation and the topologically nontrivial Berry phase effect. We adopt the instanton approach with both symmetry analysis and accurate numerical solutions that consistently incorporate nonperturbative dissipation and the Berry phase. It reveals a unique and interesting dissipative quantum interference phenomenon with the Berry phase effect. The phase diagram of this tunneling exhibits Kramers degeneracy, nonmonotonic dependence on dissipation, and a generic dissipation-driven phase transition of quantum interference, before which an unconventional dissipation-enhanced regime of quantum tunneling persists.
引用
收藏
页数:13
相关论文
共 50 条
[41]   Ansatz for the quantum phase transition in a dissipative two-qubit system [J].
Zheng, Hang ;
Lu, Zhiguo ;
Zhao, Yang .
PHYSICAL REVIEW E, 2015, 91 (06)
[42]   Absence versus Presence of Dissipative Quantum Phase Transition in Josephson Junctions [J].
Masuki, Kanta ;
Sudo, Hiroyuki ;
Oshikawa, Masaki ;
Ashida, Yuto .
PHYSICAL REVIEW LETTERS, 2022, 129 (08)
[43]   Multicritical dissipative phase transitions in the anisotropic open quantum Rabi model [J].
Lyu, Guitao ;
Kottmann, Korbinian ;
Plenio, Martin B. ;
Hwang, Myung-Joong .
PHYSICAL REVIEW RESEARCH, 2024, 6 (03)
[44]   Relaxation dynamics and dissipative phase transition in quantum oscillators with period tripling [J].
Gosner, Jennifer ;
Kubala, Bjoern ;
Ankerhold, Joachim .
PHYSICAL REVIEW B, 2020, 101 (05)
[45]   Insights into quantum tunneling via a phase-space approach [J].
Chen, Chen ;
Zhou, Shuyu .
PHYSICAL REVIEW A, 2024, 109 (03)
[46]   Quantum Monte Carlo tunneling from quantum chemistry to quantum annealing [J].
Mazzola, Guglielmo ;
Smelyanskiy, Vadim N. ;
Troyer, Matthias .
PHYSICAL REVIEW B, 2017, 96 (13)
[47]   The Berry phase: A topological test for the spectrum structure of frustrated quantum spin systems [J].
Richert, Jean .
PHYSICS LETTERS A, 2008, 372 (32) :5352-5355
[48]   Optimal working point in dissipative quantum annealing [J].
Arceci, Luca ;
Barbarino, Simone ;
Rossini, Davide ;
Santoro, Giuseppe E. .
PHYSICAL REVIEW B, 2018, 98 (06)
[49]   Quantum tunneling effect of a driven inverted harmonic oscillator [J].
Guo, Guang-Jie ;
Ren, Zhong-Zhou ;
Ju, Guo-Xing ;
Guo, Xiao-Yong .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (30)
[50]   Dissipative quantum Hopfield network: a numerical analysis [J].
Torres, Joaquin J. ;
Manzano, Daniel .
NEW JOURNAL OF PHYSICS, 2024, 26 (10)