Dissipative Berry phase effect in quantum tunneling

被引:1
作者
Zhang, Xiao-Xiao [1 ,2 ,3 ]
Nagaosa, Naoto [3 ,4 ]
机构
[1] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada
[2] Univ British Columbia, Stewart Blusson Quantum Matter Inst, Vancouver, BC V6T 1Z4, Canada
[3] RIKEN Ctr Emergent Matter Sci CEMS, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[4] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
基金
加拿大自然科学与工程研究理事会;
关键词
MAGNETIC MONOPOLES; FALSE VACUUM; SPIN; INTERFERENCE; GENERATION; DYNAMICS; FORMULAS; SYSTEMS; DECAY; FATE;
D O I
10.1103/PhysRevB.102.245426
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Berry phase effect plays a central role in many mesoscale condensed matter and quantum chemical systems that are naturally under the environmental influence of dissipation. We propose and microscopically derive a prototypical quantum coherent tunneling model around a monopole or conical potential intersection in order to address the intriguing but overlooked interplay between dissipation and the topologically nontrivial Berry phase effect. We adopt the instanton approach with both symmetry analysis and accurate numerical solutions that consistently incorporate nonperturbative dissipation and the Berry phase. It reveals a unique and interesting dissipative quantum interference phenomenon with the Berry phase effect. The phase diagram of this tunneling exhibits Kramers degeneracy, nonmonotonic dependence on dissipation, and a generic dissipation-driven phase transition of quantum interference, before which an unconventional dissipation-enhanced regime of quantum tunneling persists.
引用
收藏
页数:13
相关论文
共 50 条
[21]   Dissipative quantum chaos unveiled by stochastic quantum trajectories [J].
Ferrari, Filippo ;
Gravina, Luca ;
Eeltink, Debbie ;
Scarlino, Pasquale ;
Savona, Vincenzo ;
Minganti, Fabrizio .
PHYSICAL REVIEW RESEARCH, 2025, 7 (01)
[22]   Quantum tunneling effect of a time-dependent inverted harmonic oscillator [J].
Guo, Guang-Jie ;
Ren, Zhong-Zhou ;
Ju, Guo-Xing ;
Guo, Xiao-Yong .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (18)
[23]   Quantum mechanical evolution operator in the presence of a scalar linear potential: discussion on the evolved state, phase shift generator and tunneling [J].
Fratini, F. ;
Safari, L. .
PHYSICA SCRIPTA, 2014, 89 (08)
[24]   Comment on "Absence of a Dissipative Quantum Phase Transition in Josephson Junctions" [J].
Hakonen, Pertti J. ;
Sonin, Edouard B. .
PHYSICAL REVIEW X, 2021, 11 (01)
[25]   Phase diagram of the dissipative quantum Ising model on a square lattice [J].
Jin, Jiasen ;
Biella, Alberto ;
Viyuela, Oscar ;
Ciuti, Cristiano ;
Fazio, Rosario ;
Rossini, Davide .
PHYSICAL REVIEW B, 2018, 98 (24)
[26]   Observation of the Schmid-Bulgadaev dissipative quantum phase transition [J].
Kuzmin, Roman ;
Mehta, Nitish ;
Grabon, Nicholas ;
Mencia, Raymond A. ;
Burshtein, Amir ;
Goldstein, Moshe ;
Manucharyan, Vladimir E. .
NATURE PHYSICS, 2025, 21 (01) :132-136
[27]   Nonequilibrium phase transition in a driven-dissipative quantum antiferromagnet [J].
Kalthoff, Mona H. ;
Kennes, Dante M. ;
Millis, Andrew J. ;
Sentef, Michael A. .
PHYSICAL REVIEW RESEARCH, 2022, 4 (02)
[28]   Spin fluctuations in the dissipative phase transitions of the quantum Rabi model [J].
Li, Jiahui ;
Fazio, Rosario ;
Wang, Yingdan ;
Chesi, Stefano .
PHYSICAL REVIEW RESEARCH, 2024, 6 (04)
[29]   Effect of bath temperature on the decoherence of quantum dissipative systems [J].
Wu, Wei ;
Lin, Hai-Qing .
PHYSICAL REVIEW A, 2016, 94 (06)
[30]   Tunneling in polymer quantization and the Quantum Zeno Effect [J].
Demir, Durmus Ali ;
Sargin, Ozan .
PHYSICS LETTERS A, 2014, 378 (44) :3237-3243