Numerical Regge pole analysis of resonance structures in elastic, inelastic and reactive state-to-state integral cross sections

被引:5
作者
Akhmatskaya, E. [1 ,3 ]
Sokolovski, D. [2 ,3 ]
Echeverria-Arrondo, C. [2 ]
机构
[1] BCAM, Bilbao 48009, Bizkaia, Spain
[2] Univ Basque Country, Dept Phys Chem, Leioa 48940, Spain
[3] Basque Fdn Sci, IKERBASQUE, E-48011 Bilbao, Spain
关键词
Atomic and molecular collisions; Integral cross sections; Resonances; S-matrix; Pade approximation; Regge poles; ANGULAR-MOMENTUM ANALYSIS; COMPLEX OPTICAL POTENTIALS; MOLECULAR-COLLISIONS; HYPERQUANTIZATION ALGORITHM; REACTION DYNAMICS; DIFFRACTION SCATTERING; PADE RECONSTRUCTION; ATOMIC-COLLISIONS; QUANTUM; F+H-2;
D O I
10.1016/j.cpc.2014.03.030
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a detailed description of a FORTRAN code for evaluation of the resonance contribution a Regge trajectory makes to the integral state-to-state cross section (ICS) within a specified range of energies. The contribution is evaluated with the help of the Mulholland formula (Macek et al., 2004) and its variants (Sokolovski et al., 2007; Sokolovski and Akhmatskaya, 2011). Regge pole positions and residues are obtained by analytically continuing S-matrix element, evaluated numerically for the physical values of the total angular momentum, into the complex angular momentum plane using the PADE_I I program (Sokolovski et al., 2011). The code decomposes an elastic, inelastic, or reactive ICS into a structured, resonance, and a smooth, 'direct', components, and attributes observed resonance structure to resonance Regge trajectories. The package has been successfully tested on various models, as well as the F + H-2 -> HF + H benchmark reaction. Several detailed examples are given in the text.
引用
收藏
页码:2127 / 2137
页数:11
相关论文
共 51 条
[1]   Observation and interpretation of a time-delayed mechanism in the hydrogen exchange reaction [J].
Althorpe, SC ;
Fernández-Alonso, F ;
Bean, BD ;
Ayers, JD ;
Pomerantz, AE ;
Zare, RN ;
Wrede, E .
NATURE, 2002, 416 (6876) :67-70
[2]   Energy dependence of forward scattering in the differential cross section of the H+D2→HD(v′=3,j'′=0)+D reaction [J].
Aoiz, FJ ;
Bañares, L ;
Castillo, JF ;
Sokolovski, D .
JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (06) :2546-2556
[3]   Lifetime of reactive scattering resonances:: Q-matrix analysis and angular momentum dependence for the F+H2 reaction by the hyperquantization algorithm [J].
Aquilanti, V ;
Cavalli, S ;
Simoni, A ;
Aguilar, A ;
Lucas, JM ;
De Fazio, D .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (23) :11675-11690
[4]   Hyperquantization algorithm. I. Theory for triatomic systems [J].
Aquilanti, V ;
Cavalli, S ;
De Fazio, D .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (10) :3792-3804
[5]   Exact reaction dynamics by the hyperquantization algorithm:: integral and differential cross sections for F+H2, including long-range and spin orbit effects [J].
Aquilanti, V ;
Cavalli, S ;
De Fazio, D ;
Volpi, A ;
Aguilar, A ;
Giménez, X ;
Lucas, JM .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2002, 4 (03) :401-415
[6]  
Baker G. A., 1975, ESSENTIALS PADE APPR
[7]   MOMENTUM-TRANSFER DISPERSION-RELATIONS FOR ELECTRON-ATOM CROSS-SECTIONS [J].
BESSIS, D ;
HAFFAD, A ;
MSEZANE, AZ .
PHYSICAL REVIEW A, 1994, 49 (05) :3366-3375
[8]  
Burke P. G., 1969, Computer Physics Communications, V1, P97, DOI 10.1016/0010-4655(69)90003-4
[9]   Crossed-beam studies of reaction dynamics [J].
Casavecchia, P ;
Balucani, N ;
Volpi, GG .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1999, 50 :347-376
[10]   Quantum theory of chemical reaction dynamics [J].
Clary, DC .
SCIENCE, 1998, 279 (5358) :1879-1882