Development of a New Scoring Function for Virtual Screening: APBScore

被引:12
作者
Bao, Jingxiao [1 ]
He, Xiao [1 ,2 ]
Zhang, John Z. H. [1 ,2 ,3 ]
机构
[1] East China Normal Univ, Sch Chem & Mol Engn, Shanghai Engn Res Ctr Mol Therapeut & New Drug De, Shanghai 200062, Peoples R China
[2] NYU Shanghai, NYU ECNU Ctr Computat Chem, Shanghai 200062, Peoples R China
[3] Shanxi Univ, Collaborat Innovat Ctr Extrc Me Opt, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划; 上海市自然科学基金;
关键词
BINDING-AFFINITY PREDICTION; PROTEIN-LIGAND POSES; INTERACTION ENTROPY; MOLECULAR-DYNAMICS; BLIND PREDICTION; NONBONDED MODEL; SURFACE-AREA; FORCE-FIELD; DOCKING; ACCURATE;
D O I
10.1021/acs.jcim.0c00474
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
In this study, we developed a new physical-based scoring function, Atom Pair-Based Scoring function (APBScore), which includes pairwise van der Waals (VDW), electrostatic interaction, and hydrogen bond energies between the receptor and ligand. Despite the simple form of this scoring function, the tests of APBScore on several benchmark datasets show its excellent performance in scoring as compared to other widely used traditional scoring functions. Particularly, the scoring performance of APBScore is among the top-ranking scoring functions for complexes with zinc/ligand interactions. In addition to the scoring power, APBScore also shows good performance in ranking and docking as compared to some traditional scoring functions. In addition, the APBScore is sensitive to receptor/ligand atomic collisions and therefore can correctly identify decoy complex structures with atomic collisions. These features are the result of optimizing atom-pair VDW interactions, performing structural minimization of the initial structures, and treating zinc/ligand interactions more accurately. The source code of APBScore is available at https://github.com/BaoJingxiao/APBScore.
引用
收藏
页码:6355 / 6365
页数:11
相关论文
共 76 条
[1]   Advancing Drug Discovery through Enhanced Free Energy Calculations [J].
Abel, Robert ;
Wang, Lingle ;
Harder, Edward D. ;
Berne, B. J. ;
Friesner, Richard A. .
ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (07) :1625-1632
[2]   Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening [J].
Ain, Qurrat Ul ;
Aleksandrova, Antoniya ;
Roessler, Florian D. ;
Ballester, Pedro J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2015, 5 (06) :405-424
[3]   Statistical Analysis on the Performance of Molecular Mechanics Poisson-Boltzmann Surface Area versus Absolute Binding Free Energy Calculations: Bromodomains as a Case Study [J].
Aldeghi, Matteo ;
Bodkin, Michael J. ;
Knapp, Stefan ;
Biggin, Philip C. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2017, 57 (09) :2203-2221
[4]  
Ashtawy H. M., 2015, BMC BIOINFORM, V16, P12
[5]   Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment [J].
Ashtawy, Hossam M. ;
Mahapatra, Nihar R. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2018, 58 (01) :119-133
[6]  
Baxter CA, 1998, PROTEINS, V33, P367, DOI 10.1002/(SICI)1097-0134(19981115)33:3<367::AID-PROT6>3.0.CO
[7]  
2-W
[8]   Rapid, Accurate, Precise, and Reliable Relative Free Energy Prediction Using Ensemble Based Thermodynamic Integration [J].
Bhati, Agastya P. ;
Wan, Shunzhou ;
Wright, David W. ;
Coveney, Peter V. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (01) :210-222
[9]   RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy [J].
Burley, Stephen K. ;
Berman, Helen M. ;
Bhikadiya, Charmi ;
Bi, Chunxiao ;
Chen, Li ;
Di Costanzo, Luigi ;
Christie, Cole ;
Dalenberg, Ken ;
Duarte, Jose M. ;
Dutta, Shuchismita ;
Feng, Zukang ;
Ghosh, Sutapa ;
Goodsell, David S. ;
Green, Rachel K. ;
Guranovic, Vladimir ;
Guzenko, Dmytro ;
Hudson, Brian P. ;
Kalro, Tara ;
Liang, Yuhe ;
Lowe, Robert ;
Namkoong, Harry ;
Peisach, Ezra ;
Periskova, Irina ;
Prlic, Andreas ;
Randle, Chris ;
Rose, Alexander ;
Rose, Peter ;
Sala, Raul ;
Sekharan, Monica ;
Shao, Chenghua ;
Tan, Lihua ;
Tao, Yi-Ping ;
Valasatava, Yana ;
Voigt, Maria ;
Westbrook, John ;
Woo, Jesse ;
Yang, Huanwang ;
Young, Jasmine ;
Zhuravleva, Marina ;
Zardecki, Christine .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D464-D474
[10]   Improved protein-ligand binding affinity prediction by using a curvature-dependent surface-area model [J].
Cao, Yang ;
Li, Lei .
BIOINFORMATICS, 2014, 30 (12) :1674-1680