Localization of Discrete Time Quantum Walks on the Glued Trees

被引:10
作者
Ide, Yusuke [1 ]
Konno, Norio [2 ]
Segawa, Etsuo [3 ]
Xu, Xin-Ping [4 ,5 ]
机构
[1] Kanagawa Univ, Fac Engn, Dept Informat Syst Creat, Yokohama, Kanagawa 2218686, Japan
[2] Yokohama Natl Univ, Fac Engn, Dept Appl Math, Yokohama, Kanagawa 2408501, Japan
[3] Tohoku Univ, Grad Sch Informat Sci, Aoba Ku, Sendai, Miyagi 9808579, Japan
[4] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
[5] Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
discrete time quantum walks; Localization; glued tree; Jacobi matrix; spectral analysis; Orthogonal Polynomial; Chebyshev polynomial;
D O I
10.3390/e16031501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider the time averaged distribution of discrete time quantum walks on the glued trees. In order to analyze the walks on the glued trees, we consider a reduction to the walks on path graphs. Using a spectral analysis of the Jacobi matrices defined by the corresponding random walks on the path graphs, we have a spectral decomposition of the time evolution operator of the quantum walks. We find significant contributions of the eigenvalues, +/- 1, of the Jacobi matrices to the time averaged limit distribution of the quantum walks. As a consequence, we obtain the lower bounds of the time averaged distribution.
引用
收藏
页码:1501 / 1514
页数:14
相关论文
共 22 条
[1]  
Aharonov D., 2001, P 33 ANN ACM S THEOR, DOI [10.1145/380752.380758, DOI 10.1145/380752.380758]
[2]   Asymptotic evolution of quantum walks with random coin [J].
Ahlbrecht, A. ;
Vogts, H. ;
Werner, A. H. ;
Werner, R. F. .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (04)
[3]   Quantum walk algorithm for element distinctness [J].
Ambainis, A .
45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2004, :22-31
[4]  
Ambainis A., 2001, P 33 ANN ACM S THEOR, P37, DOI 10.1145/380752.380757.
[5]   Two-particle quantum walks: Entanglement and graph isomorphism testing [J].
Berry, Scott D. ;
Wang, Jingbo B. .
PHYSICAL REVIEW A, 2011, 83 (04)
[6]   Quantum-walk-based search and centrality [J].
Berry, Scott D. ;
Wang, Jingbo B. .
PHYSICAL REVIEW A, 2010, 82 (04)
[7]  
Childs A.M., 2003, P 35 ANN ACM S THEOR, P59, DOI [DOI 10.1145/780542.780552, 10.1145/780542.780552]
[8]   A classical approach to the graph isomorphism problem using quantum walks [J].
Douglas, Brendan L. ;
Wang, Jingbo B. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (07)
[9]   Quantum walks: a comprehensive review [J].
Elias Venegas-Andraca, Salvador .
QUANTUM INFORMATION PROCESSING, 2012, 11 (05) :1015-1106
[10]   Average mixing of continuous quantum walks [J].
Godsil, Chris .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (07) :1649-1662