Membrane Dynamics in Phototrophic Bacteria

被引:46
作者
Mullineaux, Conrad W. [1 ]
Liu, Lu-Ning [2 ,3 ,4 ]
机构
[1] Queen Mary Univ London, Sch Biol & Chem Sci, London E1 4NS, England
[2] Univ Liverpool, Inst Integrat Biol, Liverpool L69 7ZB, Merseyside, England
[3] Ocean Univ China, Coll Marine Life Sci, Qingdao 266003, Peoples R China
[4] Ocean Univ China, Frontiers Sci Ctr Deep Ocean Multispheres & Earth, Qingdao 266003, Peoples R China
来源
ANNUAL REVIEW OF MICROBIOLOGY, VOL 74, 2020 | 2020年 / 74卷
基金
英国生物技术与生命科学研究理事会; 欧盟地平线“2020”;
关键词
chromatophore; cyanobacteria; diffusion; electron transport; photosynthesis; purple bacteria; thylakoid membrane; RHODOBACTER-SPHAEROIDES; PHOTOSYNTHETIC MEMBRANE; CYANOBACTERIAL; ARCHITECTURE; ADAPTATION; BIOGENESIS; COMPLEXES;
D O I
10.1146/annurev-micro-020518-120134
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Photosynthetic membranes are typically densely packed with proteins, and this is crucial for their function in efficient trapping of light energy. Despite being crowded with protein, the membranes are fluid systems in which proteins and smaller molecules can diffuse. Fluidity is also crucial for photosynthetic function, as it is essential for biogenesis, electron transport, and protein redistribution for functional regulation. All photosynthetic membranes seem to maintain a delicate balance between crowding, order, and fluidity. How does this work in phototrophic bacteria? In this review, we focus on two types of intensively studied bacterial photosynthetic membranes: the chromatophore membranes of purple bacteria and the thylakoid membranes of cyanobacteria. Both systems are distinct from the plasma membrane, and both have a distinctive protein composition that reflects their specialized roles. Chromatophores are formed from plasma membrane invaginations, while thylakoid membranes appear to be an independent intracellular membrane system. We discuss the techniques that can be applied to study the organization and dynamics of these membrane systems, including electron microscopy techniques, atomic force microscopy, and many variants of fluorescence microscopy. We go on to discuss the insights that have been acquired from these techniques, and the role of membrane dynamics in the physiology of photosynthetic membranes. Membrane dynamics on multiple timescales are crucial for membrane function, from electron transport on timescales of microseconds to milliseconds to regulation and biogenesis on timescales of minutes to hours. We emphasize the open questions that remain in the field.
引用
收藏
页码:633 / 654
页数:22
相关论文
共 120 条
[1]   Adaptation of intracytoplasmic membranes to altered light intensity in Rhodobacter sphaeroides [J].
Adams, Peter G. ;
Hunter, C. Neil .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2012, 1817 (09) :1616-1627
[2]   High-speed atomic force microscopy and its future prospects [J].
Ando T. .
Biophysical Reviews, 2018, 10 (2) :285-292
[3]  
[Anonymous], 2019, PLANT CELL, DOI DOI 10.1105/tpc.18.00787
[4]   Proteome Mapping of a Cyanobacterium Reveals Distinct Compartment Organization and Cell-Dispersed Metabolism1[CC-BY] [J].
Baers, Laura L. ;
Breckels, Lisa M. ;
Mills, Lauren A. ;
Gatto, Laurent ;
Deery, Michael J. ;
Stevens, Tim J. ;
Howe, Christopher J. ;
Lilley, Kathryn S. ;
Lea-Smith, David J. .
PLANT PHYSIOLOGY, 2019, 181 (04) :1721-1738
[5]   The native architecture of a photosynthetic membrane [J].
Bahatyrova, S ;
Frese, RN ;
Siebert, CA ;
Olsen, JD ;
van der Werf, KO ;
van Grondelle, R ;
Niederman, RA ;
Bullough, PA ;
Otto, C ;
Hunter, CN .
NATURE, 2004, 430 (7003) :1058-1062
[6]   Proteorhodopsin phototrophy in the ocean [J].
Béjà, O ;
Spudich, EN ;
Spudich, JL ;
Leclerc, M ;
DeLong, EF .
NATURE, 2001, 411 (6839) :786-789
[7]   ATOMIC FORCE MICROSCOPE [J].
BINNIG, G ;
QUATE, CF ;
GERBER, C .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :930-933
[8]   Localisation and interactions of the Vipp1 protein in cyanobacteria [J].
Bryan, Samantha J. ;
Burroughs, Nigel J. ;
Shevela, Dmitriy ;
Yu, Jianfeng ;
Rupprecht, Eva ;
Liu, Lu-Ning ;
Mastroianni, Giulia ;
Xue, Quan ;
Llorente-Garcia, Isabel ;
Leake, Mark C. ;
Eichacker, Lutz A. ;
Schneider, Dirk ;
Nixon, Peter J. ;
Mullineaux, Conrad W. .
MOLECULAR MICROBIOLOGY, 2014, 94 (05) :1179-1195
[9]   Structural basis for the PufX-mediated dimerization of bacterial photosynthetic core complexes [J].
Busselez, Johan ;
Cottevieille, Magali ;
Cuniasse, Philippe ;
Gubellini, Francesca ;
Boisset, Nicolas ;
Levy, Daniel .
STRUCTURE, 2007, 15 (12) :1674-1683
[10]   The Cytochrome b6f Complex Is Not Involved in Cyanobacterial State Transitions [J].
Calzadilla, Pablo, I ;
Zhan, Jiao ;
Setif, Pierre ;
Lemaire, Claire ;
Solymosi, Daniel ;
Battchikova, Natalia ;
Wang, Qiang ;
Kirilovsky, Diana .
PLANT CELL, 2019, 31 (04) :911-931