A variation embedding theorem and applications

被引:37
作者
Friz, Peter [1 ]
Victoir, Nicolas [1 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB2 1TN, England
关键词
fractional Sobolev; Besov spaces; q-variation embedding; rough paths; regularity of the Ito-map; regularity of Cameron-Martin;
D O I
10.1016/j.jfa.2005.12.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fractional Sobolev spaces, also known as Besov or Slobodetski spaces, arise in many areas of analysis, stochastic analysis in particular. We prove an embedding into certain q-variation spaces. Applications include a new route to a regularity result by Kusuoka for stochastic differential equations, integration against Besov-paths, a regularity criterion for rough paths and a new regularity result for Cameron-Martin paths associated to fractional Brownian motion. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:631 / 637
页数:7
相关论文
共 12 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
DECREUSEFOND L, 2004, ANN I POINCARE
[3]   On fractional Brownian processes [J].
Feyel, D ;
De la Pradelle, A .
POTENTIAL ANALYSIS, 1999, 10 (03) :273-288
[4]   Levy's area under conditioning [J].
Friz, P ;
Lyons, T ;
Stroock, D .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2006, 42 (01) :89-101
[5]   Approximations of the Brownian rough path with applications to stochastic analysis [J].
Friz, P ;
Victoir, N .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (04) :703-724
[6]  
FRIZ P, 2005, LARGE DEVIATION PRIN
[7]  
KUSUOKA S, 1993, PITMAN RES NOTES MAT, V284, P90
[8]  
Lyons T., 2002, SYSTEM CONTROL ROUGH, DOI DOI 10.1093/ACPROF:OSO/9780198506485.001.0001
[9]  
Lyons TJ, 1997, NEW TRENDS IN STOCHASTIC ANALYSIS, P348
[10]   Differential equations driven by rough signals [J].
Lyons, TJ .
REVISTA MATEMATICA IBEROAMERICANA, 1998, 14 (02) :215-310