Unsteady axisymmetric flow and heat transfer of a hybrid nanofluid over a permeable stretching/shrinking disc

被引:23
|
作者
Khashi'ie, Najiyah Safwa [1 ]
Arifin, Norihan M. [2 ]
Pop, Ioan [3 ]
机构
[1] Univ Teknikal Malaysia Melaka, Fak Teknol Kejuruteraan Mekanikal Dan Pembuatan, Melaka, Malaysia
[2] Univ Putra Malaysia, Dept Math, Seri Kembangan, Selangor, Malaysia
[3] Univ Babes Bolyai, Fac Matemat & Informat, Cluj Napoca, Romania
关键词
Stability analysis; Unsteady flow; Dual solutions; Hybrid nanofluid; Permeable disc; STAGNATION-POINT FLOW; MHD FLOW; SHEET; CONVECTION; PLATE;
D O I
10.1108/HFF-07-2020-0421
中图分类号
O414.1 [热力学];
学科分类号
摘要
Purpose This study aims to analyze the unsteady flow of hybrid Cu-Al2O3/water nanofluid over a permeable stretching/shrinking disc. The analysis of flow stability is also purposed because of the non-uniqueness of solutions. Design/methodology/approach The reduced differential equations (similarity) are solved numerically using the aid of bvp4c solver (Matlab). Two types of thermophysical correlations for hybrid nanofluid (Type 1 and 2) are adopted for the comparison results. Using correlation Type 1, the heat transfer and flow analysis including the profiles (velocity and temperature) are presented in the figures and tables with different values control parameters. Three sets of hybrid nanofluid are analyzed: Set 1 (1% Al2O3 + 1% Cu), Set 2 (0.5% Al2O3 + 1% Cu) and Set 3 (1% Al2O3 + 0.5% Cu). Findings The comparison of numerical values between present (Types 1 and 2 correlations) and previous (Type 2 correlations) results are in a good compliance with approximate percent relative error. The appearance of two solutions is noticed when the suction parameter is considered and the unsteady parameter is less than 0 (decelerating flow) for both stretching and shrinking disc while only one solution is possible for steady flow. The hybrid nanofluid in Set 1 can delay the separation of boundary layer but the hybrid nanofluid in Set 3 has the greatest heat transfer rate. Moreover, the inclusion of wall mass suction for stretching case can generate a significant increment of heat transfer rate approximately 90% for all fluids (water, single and hybrid nanofluids). Originality/value The present findings are novel and can be a reference point to other researchers to further analyze the heat transfer performance and stability of the working fluids.
引用
收藏
页码:2005 / 2021
页数:17
相关论文
共 50 条
  • [41] Mixed convection flow over an exponentially stretching/shrinking vertical surface in a hybrid nanofluid
    Waini, Iskandar
    Ishak, Anuar
    Pop, Ioan
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (03) : 1881 - 1891
  • [42] Heat Transfer in Hydromagnetic Flow over an Unsteady Stretching Permeable Sheet
    Chaudhary, Susheela
    Chaudhary, Santosh
    Singh, Sawai
    INTERNATIONAL JOURNAL OF MATHEMATICAL ENGINEERING AND MANAGEMENT SCIENCES, 2019, 4 (04) : 1018 - 1030
  • [43] A numerical and statistical analysis of the unsteady ternary hybrid nanofluid flow and heat transfer over a generalized stretching/shrinking wall
    Wahid, Nur Syahirah
    Rosca, Natalia C.
    Rosca, Alin V.
    Pop, Ioan
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2025, 105 (02):
  • [44] Non-axisymmetric Homann stagnation point flow and heat transfer past a stretching/shrinking sheet using hybrid nanofluid
    Khashi'ie, Najiyah Safwa
    Arifin, Norihan Md
    Pop, Ioan
    Nazar, Roslinda
    Hafidzuddin, Ezad Hafidz
    Wahi, Nadihah
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2020, 30 (10) : 4583 - 4606
  • [45] Unsteady MHD stagnation point flow induced by exponentially permeable stretching/shrinking sheet of hybrid nanofluid
    Zainal, Nurul Amira
    Nazar, Roslinda
    Naganthran, Kohilavani
    Pop, Ioan
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2021, 24 (05): : 1201 - 1210
  • [46] MHD flow and heat transfer of a hybrid nanofluid past a nonlinear surface stretching/shrinking with effects of thermal radiation and suction
    Jaafar, A'isyah
    Waini, Iskandar
    Jamaludin, Anuar
    Nazar, Roslinda
    Pop, Ioan
    CHINESE JOURNAL OF PHYSICS, 2022, 79 : 13 - 27
  • [47] Unsteady boundary layer flow over a permeable curved stretching/shrinking surface
    Rosca, Natalia C.
    Pop, Ioan
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2015, 51 : 61 - 67
  • [48] UNSTEADY MHD MICROPOLAR FLUID FLOW OVER A PERMEABLE STRETCHING/SHRINKING SHEET WITH HEAT SOURCE/SINK
    Kumar, Navin
    Jat, R. N.
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2019, 18 (3-4): : 139 - 153
  • [49] Stability and quadruple solution dynamics of unsteady ternary hybrid nanofluid flow over a stretching/shrinking wedge
    Ouyang, Yun
    Basir, Md Faisal Md
    Naganthran, Kohilavani
    Pop, Ioan
    CHINESE JOURNAL OF PHYSICS, 2025, 95 : 558 - 572
  • [50] MHD flow and heat transfer near stagnation point over a stretching/shrinking surface with partial slip and viscous dissipation: Hybrid nanofluid versus nanofluid
    Aly, Emad H.
    Pop, I
    POWDER TECHNOLOGY, 2020, 367 : 192 - 205