Unsteady axisymmetric flow and heat transfer of a hybrid nanofluid over a permeable stretching/shrinking disc

被引:23
|
作者
Khashi'ie, Najiyah Safwa [1 ]
Arifin, Norihan M. [2 ]
Pop, Ioan [3 ]
机构
[1] Univ Teknikal Malaysia Melaka, Fak Teknol Kejuruteraan Mekanikal Dan Pembuatan, Melaka, Malaysia
[2] Univ Putra Malaysia, Dept Math, Seri Kembangan, Selangor, Malaysia
[3] Univ Babes Bolyai, Fac Matemat & Informat, Cluj Napoca, Romania
关键词
Stability analysis; Unsteady flow; Dual solutions; Hybrid nanofluid; Permeable disc; STAGNATION-POINT FLOW; MHD FLOW; SHEET; CONVECTION; PLATE;
D O I
10.1108/HFF-07-2020-0421
中图分类号
O414.1 [热力学];
学科分类号
摘要
Purpose This study aims to analyze the unsteady flow of hybrid Cu-Al2O3/water nanofluid over a permeable stretching/shrinking disc. The analysis of flow stability is also purposed because of the non-uniqueness of solutions. Design/methodology/approach The reduced differential equations (similarity) are solved numerically using the aid of bvp4c solver (Matlab). Two types of thermophysical correlations for hybrid nanofluid (Type 1 and 2) are adopted for the comparison results. Using correlation Type 1, the heat transfer and flow analysis including the profiles (velocity and temperature) are presented in the figures and tables with different values control parameters. Three sets of hybrid nanofluid are analyzed: Set 1 (1% Al2O3 + 1% Cu), Set 2 (0.5% Al2O3 + 1% Cu) and Set 3 (1% Al2O3 + 0.5% Cu). Findings The comparison of numerical values between present (Types 1 and 2 correlations) and previous (Type 2 correlations) results are in a good compliance with approximate percent relative error. The appearance of two solutions is noticed when the suction parameter is considered and the unsteady parameter is less than 0 (decelerating flow) for both stretching and shrinking disc while only one solution is possible for steady flow. The hybrid nanofluid in Set 1 can delay the separation of boundary layer but the hybrid nanofluid in Set 3 has the greatest heat transfer rate. Moreover, the inclusion of wall mass suction for stretching case can generate a significant increment of heat transfer rate approximately 90% for all fluids (water, single and hybrid nanofluids). Originality/value The present findings are novel and can be a reference point to other researchers to further analyze the heat transfer performance and stability of the working fluids.
引用
收藏
页码:2005 / 2021
页数:17
相关论文
共 50 条
  • [31] Hybrid nanofluid flow over an unsteady stretching/shrinking disk with thermal radiation
    Maiti, Hiranmoy
    Mukhopadhyay, Swati
    Vajravelu, K.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2024, 38 (17):
  • [32] Numerical analysis of a second-grade fuzzy hybrid nanofluid flow and heat transfer over a permeable stretching/shrinking sheet
    Nadeem, Muhammad
    Siddique, Imran
    Awrejcewicz, Jan
    Bilal, Muhammad
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [33] Numerical analysis of a second-grade fuzzy hybrid nanofluid flow and heat transfer over a permeable stretching/shrinking sheet
    Muhammad Nadeem
    Imran Siddique
    Jan Awrejcewicz
    Muhammad Bilal
    Scientific Reports, 12
  • [34] Unsteady flow and heat transfer past a permeable stretching/shrinking sheet in a nanofluid: A revised model with stability and regression analyses
    Jahan, Shah
    Sakidin, Hamzah
    Nazar, Roslinda
    Pop, Ioan
    JOURNAL OF MOLECULAR LIQUIDS, 2018, 261 : 550 - 564
  • [35] Boundary layer flow and heat transfer of a nanofluid over a permeable unsteady stretching sheet with viscous dissipation
    Ferdows, M.
    Chapal, S. M.
    Afify, A. A.
    JOURNAL OF ENGINEERING THERMOPHYSICS, 2014, 23 (03) : 216 - 228
  • [36] Boundary layer flow and heat transfer of a nanofluid over a permeable unsteady stretching sheet with viscous dissipation
    M. Ferdows
    S. M. Chapal
    A. A. Afify
    Journal of Engineering Thermophysics, 2014, 23 : 216 - 228
  • [37] Mathematical Study of Heat Transfer in a Stagnation Flow of a Hybrid Nanofluid over a Stretching/Shrinking Cylinder
    Poornima T.
    Sreenivasulu P.
    Souayeh B.
    Journal of Engineering Physics and Thermophysics, 2022, 95 (06) : 1443 - 1454
  • [38] Unsteady flow and heat transfer past an axisymmetric permeable shrinking sheet with radiation effect
    Ali, F. M.
    Nazar, R.
    Arifin, N. M.
    Pop, I.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 67 (10) : 1310 - 1320
  • [39] Exact solutions for magnetohydrodynamic nanofluids flow and heat transfer over a permeable axisymmetric radially stretching/shrinking sheet
    Mahabaleshwar, U. S.
    Vanitha, G. P.
    Perez, L. M.
    Aly, Emad H.
    Pop, I.
    CHINESE PHYSICS B, 2024, 33 (02)
  • [40] Exact solutions for magnetohydrodynamic nanofluids flow and heat transfer over a permeable axisymmetric radially stretching/shrinking sheet
    U.S.Mahabaleshwar
    G.P.Vanitha
    L.M.Pérez
    Emad H.Aly
    I.Pop
    Chinese Physics B, 2024, 33 (02) : 130 - 136